Math 128A, Mon Oct 12
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Use a laptop or desktop with a large screen so you can read
these words clearly.

In general, please turn off your camera and mute yourself.

Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

Please always have the chat window open to ask questions.
Reading for today and Wed: Ch. 8.

PS06 due Wed.

EXAM'}\in one week.

Exam review Fri Oct 16, 10:00-noon on Zoom.



Cosets so far E
Definition 1 H

G a group, H a subgroup, a € G. Define
aH ={ah| h € H} é{_/l

Ha— {ha| he H} //ff

and all cosets have same size

The left cosets of H partition G| so: *;/

Theorem (Lagrange)
G finite, H < G. Then |H| divides |G]|. F/?(

Note that in general, left and right cosets
might overlap. To get a partition, only use
one type of coset at a time.




Cosets as pictured by Cayley table:
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Groups of order 2p ?T ?

Suppose p > 2 is prime. - > G
B g b EEERI)

Theorem

If |G| = 2p, then either G is isomorphic to Zy, (cyclic) or G is

isomorphic to D, (dihedral).

Proof: Assume G is not cyclic, so no elements of order 2p. Then:

/ Show that G must contain an element a of order p.
» Show that any b ¢ (a) must have order 2. Uses |HK| formula

» Because b, ab have order 2, G must be isomorphic to D,.

B/c ord(a=2"
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So as we see from PS02, where we analyzed a group with

FRF = R*-1}, F*2=e, every element of G can be written in the form a*n b”k,
and multiplication in G (i.e., Cayley table of G) is determined by "move-past
rules". So PS02 finishes this proof: If |G|=2p, and G not cyclic, then G must be

isomorphic to D_p.

To what extent do we understand groups of small order
now?

|G|=1: We know G = {e}.

|G|=2:prime.order, sii = Zz. 6-4‘9 %
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Orbits and stabilizers

Suppose G is a finite group of permutations of a set S. For j € S,

define
stab = all permutations that fix i (leave i alone)

stabg (i) = {a e G | a(i) =i},
orbg(i) = {a(i) | @ € G} . orbit = all the places that
elements of G can sendi.

The Orbit-Stabilizer Theorem says:

Theorem

Fori €S, |G| = |orbg(i)| |stabg(7)].

Why: Can show that elements of orbg(i) correspond bijectively
with cosets of stabg (/).



Examples of Orbit-Stabilizer

We can also think of G as

.. . a group of permutations of
G a finite group of permutations of a set S. thg vergicesf)of

Theorem icosahedron.
Fori€ S, |G| = |orbg(i)||stabg(f)]-

Example: G = group of rotational symmetries of icosahedron. All
vertices in same G-orbit; same holds for edges and faces.

Can move any v to any other vertex by rotataions, and so all vert in same orbit.

Sameis # vertices = 'Q\
deeand | = 12500
sige al

ame F =302

all faces. # faces = 20 |stabg(f)| = 3 uzj-o-_ -S

Istabg(v)| = [# rotations fixing v|




Other applications of Orbit-Stabilizer: Find
the orders of the rotational symmetry
groups of cube, octahedron,
dodecahedron, and tetrahedron....



External direct products

Making new groups from old.... ( ,L\ 8

Definition
G, H groups. External direct product G & H is:
» Set: Cartesian product G x H={(g,h) | g € G, he H}.

» Operation is componentwise:

(&1, h1)(&2, h2) = (g182, h1h2).

Identity is: ( CG_) ﬂq) é é, @ H
Inverse of (g, h) is: ( juj H“X 66-@’_(
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Examples (U l()) ‘(O\() ) (U,Z\/ (O})
Z;02 = ((’03’(”))(',2)/(‘})
(2ellegazts:} (21‘ )/ (2‘2 )/(Z;S )

Sum of two ran

fojl)f(\,s):'(miw;})f(l, 0)
Ds @ S4 has order: ‘D gs \__. I02|_|
9,1=10,(5g=2%  =2¢D )
Product of two random elements: ../[‘-:|F;. ( th‘t.I)
,5) s /
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Why external direct products?

Among other applications, they provide a convenient way to
describe non-cyclic abelian groups. For example:

Theorem

If |G| = 4, then either G is cyclic, or G is isomorphic to Zy @ Z;.
Proof:



When is G & H cyclic?
We'll see that every finite abelian group is isomorphic to a group of
the form Z,, @ --- ® Z,,, just like any positive integer is a product
of primes.
Also, just as prime factorization is unique up rearrangement, the
form Z,, @ --- @® Z,, is unique up to rearrangement and a
particular kind of ambiguity.
To start:

Theorem
For (g,h) € G & H, iford(g) and ord(h) are finite, then

ord((g, h)) = lcm(ord(g), ord(h)).

Proof:



Counting orders of elements

Example: Let G = Zg P Zy7.

» How many elements of order 9 are there in G?

» How many cyclic subgroups of order 9 does G have?



Back to “When is G & H cyclic?”

Theorem
Z,DZy is cyclic if and only if gcdn, k = 1.
Proof:



U(n) as an external direct product

For k dividing n, let

Uk(n) ={x € U(n) | x=1 (mod k)}.

Theorem
If gcd(s, t) =1, then
U(st) = U(s) & U(t).

Also, Us(st) = U(t) and Ug(st) ~ U(s).
Proof delayed until Ch. 10.
Facts: We also have that U(2) is trivial, and

U(4) ~ 22
U(2") =~ Zyn—2 @ Zy forn>3
U(p") = Zpn_pn—1 for n > 3, p an odd prime.



Example of computing the isomorphism type of U(n)

Let n =
Then U(n) is:



