
Math 128A, Mon Oct 12

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today and Wed: Ch. 8.

I PS06 due Wed.

I EXAM 1 in one week.

I Exam review Fri Oct 16, 10:00–noon on Zoom.



Cosets so far

Definition
G a group, H a subgroup, a ∈ G . Define

aH = {ah | h ∈ H}
Ha = {ha | h ∈ H}

The left cosets of H partition G , so:

Theorem (Lagrange)

G finite, H ≤ G. Then |H| divides |G |.





Groups of order 2p
Suppose p > 2 is prime.

Theorem
If |G | = 2p, then either G is isomorphic to Z2p (cyclic) or G is
isomorphic to Dp (dihedral).

Proof: Assume G is not cyclic, so no elements of order 2p. Then:

I Show that G must contain an element a of order p.

I Show that any b /∈ 〈a〉 must have order 2.

I Because b, ab have order 2, G must be isomorphic to Dp.







Orbits and stabilizers

Suppose G is a finite group of permutations of a set S . For i ∈ S ,
define

stabG (i) = {α ∈ G | α(i) = i} ,
orbG (i) = {α(i) | α ∈ G} .

The Orbit-Stabilizer Theorem says:

Theorem
For i ∈ S, |G | = |orbG (i)| |stabG (i)|.
Why: Can show that elements of orbG (i) correspond bijectively
with cosets of stabG (i).



Examples of Orbit-Stabilizer

G a finite group of permutations of a set S .

Theorem
For i ∈ S, |G | = |orbG (i)| |stabG (i)|.
Example: G = group of rotational symmetries of icosahedron. All
vertices in same G -orbit; same holds for edges and faces.

# vertices = |stabG (v)| =

# edges = |stabG (e)| =

# faces = |stabG (f )| =





External direct products

Definition
G , H groups. External direct product G ⊕ H is:

I Set: Cartesian product G × H = {(g , h) | g ∈ G , h ∈ H}.
I Operation is componentwise:

(g1, h1)(g2, h2) = (g1g2, h1h2).

Identity is:

Inverse of (g , h) is:





Examples

Z3 ⊕ Z4 =

Sum of two random elements:

D5 ⊕ S4 has order:

Product of two random elements:



Why external direct products?

Among other applications, they provide a convenient way to
describe non-cyclic abelian groups. For example:

Theorem
If |G | = 4, then either G is cyclic, or G is isomorphic to Z2 ⊕ Z2.

Proof:



When is G ⊕ H cyclic?
We’ll see that every finite abelian group is isomorphic to a group of
the form Zn1 ⊕ · · · ⊕ Znk , just like any positive integer is a product
of primes.
Also, just as prime factorization is unique up rearrangement, the
form Zn1 ⊕ · · · ⊕ Znk is unique up to rearrangement and a
particular kind of ambiguity.
To start:

Theorem
For (g , h) ∈ G ⊕ H, if ord(g) and ord(h) are finite, then

ord((g , h)) = lcm(ord(g), ord(h)).

Proof:



Counting orders of elements

Example: Let G = Z9 ⊕ Z27.

I How many elements of order 9 are there in G?

I How many cyclic subgroups of order 9 does G have?



Back to “When is G ⊕ H cyclic?”

Theorem
Zn ⊕ Zk is cyclic if and only if gcd n, k = 1.

Proof:



U(n) as an external direct product

For k dividing n, let

Uk(n) = {x ∈ U(n) | x ≡ 1 (mod k)} .

Theorem
If gcd(s, t) = 1, then

U(st) ≈ U(s)⊕ U(t).

Also, Us(st) ≈ U(t) and Ut(st) ≈ U(s).

Proof delayed until Ch. 10.
Facts: We also have that U(2) is trivial, and

U(4) ≈ Z2

U(2n) ≈ Z2n−2 ⊕ Z2 for n ≥ 3

U(pn) ≈ Zpn−pn−1 for n ≥ 3, p an odd prime.



Example of computing the isomorphism type of U(n)

Let n = .
Then U(n) is:


