Math 128A, Wed Oct 07

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Reading for today: Ch. 7. Mon: Ch. 8.
- PS05 due tonight; outline for PS06 due Fri.
- Problem session Fri Oct 09, 10:00–noon on Zoom.

Cosets

H conjugated on the left by a

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

G a group, H a subgroup, $a \in G$. Define

$$aH = \{ah \mid h \in H\}$$

 $Ha = \{ha \mid h \in H\}$
 $aHa^{-1} = \{aha^{-1} \mid h \in H\}$

We call aH the **left coset of** H **in** G **containing** a, and we call Ha the **right coset of** H **in** G **containing** a.

Cosets via equivalence relations

S&S=> (a-16) = 5-10 So 6-1 a EM. \bigcirc 20 a,b,c=G.a~b,b~c So albey biceH $B/cH closed op, (a^{-1}b)(b^{-1}c) \in H$ $(a^{-1}b)(b^{-1}c) = a^{-1}c$ So at EH C rrc

Cosets are equivalence classes

What are equivalence classes of \sim ? The class of $a \in G$ is: $\begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ = \{b \in G \mid b \in aH\} \xrightarrow{P} \\ b \neq a \\ b \neq a \end{bmatrix}$

So left cosets of H are equivalence classes of an equivalence relation, which means that left cosets of H partition G:

Cosets all have the same size

Theorem

Suppose *H* is a finite subgroup of *G*, $a, b \in G$. Then |aH| = |bH|. **Proof:** Consider $f : aH \rightarrow bH$ given by

$$f(ah) = bh. \quad \text{for all hett.}$$

We prove that f is a bijection: (sketch)
(onsider: g: b+l \rightarrow nH by
g(bh) = ah.
(an check fog=id, gif=id.
So g=f: c) f invible => f bij.

Lagrange's Theorem

Theorem

G finite, $H \leq G$. Then |H| divides |G|.

Proof: Combine previous two slides into one picture:

Two consequences of Lagrange's Theorem

Corollary order of an element divides the *G* finite, $a \in G$. Then ord(a) divides |G|. order of the group rt ord(a)= <a>1. Corollary f|G| = p prime, then G is cyclic. then $G \approx \mathbb{Z}_{3}$, $f = \mathbb{Z}_$ Pf Choose any a EG, a te. By, or A(a) dir p, 50 ord (a) = | or p. ate, 50 ord(a)=1=) [(a)=p, 50 <a>=6

U(12)={1,5,7,11} |(12)| = 4Can check (12) not cyclic.)

The only groups of prime order that we have seen are all cyclic. That's not an accident -- all groups of prime order are cyclic.

A counting fact

Suppose $H, K \leq G$. Define

$$HK = \{hk \mid h \in H, k \in K\}.$$

Note that HK may not be a sub**group** of G, though it is always a sub**set** of G. (See PS03.)

Theorem We have that

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof: PS07.

Groups of order 2p

Suppose p > 2 is prime. Theorem (G, 10, 4, 2). If |G| = 2p, then either G is isomorphic to \mathbb{Z}_{2p} (cyclic) or G is isomorphic to D_p (dihedral). $\bigcirc \bigvee S_3 \simeq D_3$ **Proof:** Assume G is not cyclic, so no elements of order 2p. Then: Show that G must contain an element a of order p. **>>** Show that any $b \notin \langle a \rangle$ must have order 2. **T** Because *b*, *ab* have order 2, *G* must be isomorphic to D_p . O (ABC) All afe in G hove ord 2. Take a, b, A=b, ab +C. Note a= a-1, b= b-1 bre ord 2. It ab=e, then a= 6-5; contra.

So ab has order 2, (65)=e. ⇒ab=ba. Then recarchect {e, r, b, ab} is sabyp of G, ord 4.
But 4 doesn't Aivide(61=2p; (ontrn. So can't have all elts have ord. 2 => = elt n of order p.

Picture.

Technique for analyzing finite groups: Filling the box, i.e., figure out the orders of all of the elements of a group.

Fact that or N (1)=+, or N(1)=2, GFZ=>milt table of G. See text for details.

Orbits and stabilizers

Suppose G is a finite group of permutations of a set S. For $i \in S$, define

$$stab_G(i) = \{ \alpha \in G \mid \alpha(i) = i \},\$$

orb_G(i) = {\alpha(i) \mid \alpha \in G }.

The Orbit-Stabilizer Theorem says:

Theorem For $i \in S$, $|G| = |orb_G(i)| |stab_G(i)|$. Why: Can show that elements of $orb_G(i)$ correspond bijectively with cosets of $stab_G(i)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples of Orbit-Stabilizer

G a finite group of permutations of a set S.

Theorem

For $i \in S$, $|G| = |\operatorname{orb}_G(i)| |\operatorname{stab}_G(i)|$.

Example: G = group of rotational symmetries of icosahedron.

$$\#$$
 vertices = $|\operatorname{stab}_G(v)| =$

 $\# \text{ edges} = |\operatorname{stab}_G(e)| =$

faces = $|\operatorname{stab}_G(f)| =$

External direct products

Definition

G, *H* groups. **External direct product** $G \oplus H$ is:

Set: Cartesian product $G \times H = \{(g, h) \mid g \in G, h \in H\}$.

Operation is componentwise:

$$(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Identity is:

Inverse of (g, h) is:

Examples

$$\textbf{Z}_3 \oplus \textbf{Z}_4 =$$

Sum of two random elements:

 $D_5 \oplus S_4$ has order:

Product of two random elements:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ