Math 128A, Mon Oct 05

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: Ch. 7. Reading for Wed: Ch. 8.
- New deadlines: PS05 due Wed; outline for PS06 due Fri.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problem session Fri Oct 09, 10:00–noon on Zoom.

Outlines for PS05 still accepted by tonight.

Reminder: Exam 2 in 2 weeks.

In what way are isomorphic groups the same?

Things preserved by isomorphisms: Theorem $\varphi: G \to \overline{G}$ an isomorphism, $a, b \in G$. Then 1. $\varphi(e) = \overline{e}$. identity 2. $\varphi(a^n) = \varphi(a)^n$. powers 3. a and b commute $\Leftrightarrow \varphi(a)$ and $\varphi(b)$ commute. commuting 4. $G = \langle a \rangle \Leftrightarrow \overline{G} = \langle \varphi(a) \rangle$. generators 5. $\operatorname{ord}(a) = \operatorname{ord}(\varphi(a))$. orders kth 6. $x^k = b$ and $\overline{x}^k = \varphi(b)$ have the same number of solutions. roots 7. $\varphi^{-1}: \overline{G} \to G$ is also an isomorphism. 8. G and \overline{G} have same number of elements of each order. # elements of a given 9. G abelian $\Leftrightarrow \overline{G}$ abelian, abelian order 10. φ sends subgroups of G to subgroups of \overline{G} , and vice versa. 11. φ sends the center of G to the center of \overline{G} . (\bigwedge subgroup lattice center ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of one of those preserved properties

6. $x^k = b$ and $y^k = b$ (b) have the same number of solutions.

Pf S'pose $x^{\star}=b$. Then $\varphi(x^{\dagger})=\varphi(b)$ => $(\varphi(x))^{\dagger}=\varphi(b)$

So because phi is a bijection (one-to-one and onto) every solution to $x^k = b$ produces a different solution to $y^k = phi(b)$. Therefore, there are at least as many solutions to $y^k = phi(b)$ as there are to $x^k = b$.

However, because phi $\{-1\}$ is also isomorphism, by symmetry, there are at least as many solutions to $x^k = b$ as there are to $y^k = phi(b)$. So the # of solutions must be equal.

FACT: (Math 108) A function f is a bijection if and only if it has an inverse
$$f^{-1}$$
, and in that case, f^{-1} is also a bijection. See Thm 0.8, pp. 22-23.

50 QT is a bijection. WTS For a, 5 EG, $\left(\varphi'(\overline{z} \overline{z}) = \dot{\varphi}'(\overline{z}) \varphi'(\overline{z}) \right)$ (A) a, To EG bic φ onto, $\exists a, b \in b \leq 1$. $\varphi(a) = \overline{a}$ We know $\varphi(ab) = \varphi(a) \varphi(b) = \overline{a} \overline{b} \varphi(b) = \overline{b}$ $\varphi(ab) = \varphi(ab)$ $\varphi(ab) = \varphi(ab)$ $\varphi(ab) = \varphi(ab)$ But $\sigma = \varphi'(k), b = \varphi'(5)$

 $\varphi^{-1}(\overline{a})\varphi^{-1}(\overline{b}) = \varphi^{-1}(\overline{a}\overline{b})$ 56 $(\phi'(a_{5})=\phi'(a)\phi'(5))$ Jorlas rho Isoms/homoms. Q, P, Y To osi Phi

Proving that groups are **not** isomorphic

Not enough to pick some $\varphi: G \to \overline{G}$ and show φ isn't an isomorphism — maybe there's a different map that is! But just as two people with different eye colors can't be genetic twins, two groups with different characteristics can't be isomorphic. **Example:** Two groups of order 10 that aren't isomorphic?

$$Z_{10} = (yclic, ibelian)$$

$$D_{5} = n_{0}n_{1}b = 2n_{0}t_{1}(yclic)$$
Example: Prove that D_{6} and A_{4} aren't isomorphic.

$$|D_{c}|=2:6, n_{0}n_{0}ab, D_{6}has eft or darb$$

$$|A_{c}|=\frac{41}{2}, n_{0}m_{0}ab, A_{4}has only efts$$

$$|A_{c}|=\frac{41}{2}, n_{0}m_{0}ab, A_{4}has only efts$$

[4(12)= K1,5,7,11]=4 IZIS =12 Zis abelian So no two of D, Ay, Zu greisin

(Turns out that there are exactly 5 groups of order 12, up to isomorphism.)

Automorphisms

Definition

An **automorphism** of G is an isomorphism from G to itself.

An automorphism of G isn't used to show that G is the same as itself; it shows a certain symmetry in the structure of G.

Definition

 ${\it G}$ a group, ${\it a} \in {\it G}.$ Define $\varphi_{\it a}: {\it G} \rightarrow {\it G}$ by

$$\varphi_{a}(x) = axa^{-1}$$

for all $x \in G$. We call φ_a an inner automorphism of G.

Try at home: Prove that φ_a is an automorphism of *G*. Can show that the following are groups:

Aut(G) = {all automorphisms of G}
Inn(G) = {all inner automorphms of G}
= {
$$\varphi_a \mid a \in G$$
}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In general, Aut(G) is strictly bigger than Inn(G).

Example: Take G cyclic of order 3. G abelian, so lnn(G) = {id}.

Example: Take G cyclic or order a P_{4} if $G = \langle a \rangle = \{e, a, n\}$ Then $\varphi(a = e)$ $\varphi(a) = a^{2}$ $\varphi(a) = a$ is in Aut (G).

What are the main problems in group theory?

Example: Classify all groups of a given order **up to isomorphism**. That is, prove a theorem of the form:

Theorem

If G is a group with |G| = n, then G is isomorphic to exactly one of the following groups:

- ► (blah)
- ► (blah)

etc.

This kind of list quickly becomes way too long to be interesting. However, we can still make notable progress using the idea of **coset**.

After Ch. 7: Can answer above for all n<12 except n=8.

Cosets

Definition G a group, H a subgroup, $a \in G$. Define

$$aH = \{ah \mid h \in H\} \quad \bigcirc coset$$

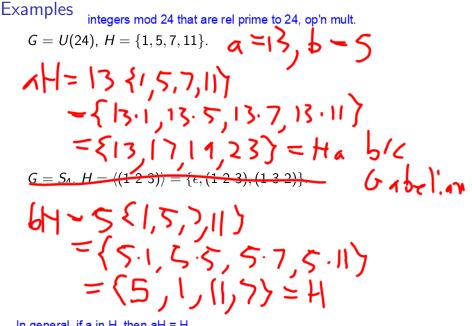
$$Ha = \{ha \mid h \in H\} \quad \bigotimes coset$$

$$aHa^{-1} = \{aha^{-1} \mid h \in H\}$$

We call Notice the left coset of H in G containing a, and we call the right coset of H in G containing a.

aH=L coset

Ha-R coset



In general, if a in H, then aH = H.

$G = S_{4} H = \langle (123) \rangle$ = $\{ \epsilon, (123), (132) \}$ a=()4) a = (14) (14) $(132)^{-1}$ $a = (14) \cdot \{e, (123), (132)\}$ $= \{ (14) \in (14) (123) (14) (132) \}$ ={(14),(1234),(1324)} $H_{n} = \{ E_{1}(123), (132) \} \cdot (14)$ Rover H_{n}

 $= \{ E \cdot (14), (123)(14), (123)(14) \}$ $= \{(14), (1423), (1+32)\} \neq a+1$ b=(12) $b_{1} = (12) \cdot \{ \epsilon, (123), (132) \}$ $= \left\{ (12), (12), (123), (12), (12) \right\}$ = $\left\{ (12), (23), (12) \right\}$ $\#_{b} = \left\{ \left\{ (12), (123), (12), (12) \right\}$ = {(12),(13),(23)} = 6H

In a nonabelian group, sometimes aH=Ha, sometimes not.

Cosets via equivalence relations

 $H \leq G$, $a, b, c \in G$.

Definition

Define $a \sim b$ to mean that $a^{-1}b \in H$.

Theorem

 \sim is an equivalence relation on G.

Cosets are equivalence classes

What are equivalence classes of \sim ? The class of $a \in G$ is:

$$\{b \in G \mid a \sim b\} = \{b \in G \mid a^{-1}b \in H\}$$
$$= \{b \in G \mid b \in aH\}$$
$$= aH.$$

So left cosets of H are equivalence classes of an equivalence relation, which means that left cosets of H partition G:

Cosets all have the same size

Theorem

Suppose *H* is a finite subgroup of *G*, $a, b \in G$. Then |aH| = |bH|. **Proof:** Consider $f : aH \rightarrow bH$ given by

f(ah) = bh.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We prove that f is a bijection:

Lagrange's Theorem

Theorem

G finite, $H \leq G$. Then |H| divides |G|.

Proof: Combine previous two slides into one picture:

Define |G : H| to be the number of cosets of H in G. Corollary |G : H| = |G| / |H|. Two consequences of Lagrange's Theorem

Corollary *G* finite, $a \in G$. Then ord(a) divides |G|.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Corollary If |G| is prime, then G is cyclic.

A counting fact

Suppose $H, K \leq G$. Define

$$HK = \{hk \mid h \in H, k \in K\}.$$

Note that HK may not be a sub**group** of G, though it is always a sub**set** of G. (See PS03.)

Theorem We have that

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof: PS07.

Groups of order 2p

Suppose p > 2 is prime.

Theorem

If |G| = 2p, then either G is isomorphic to Z_{2p} (cyclic) or G is isomorphic to D_p (dihedral).

Proof: Assume *G* is not cyclic, so no elements of order 2*p*. Then:

- Show that G must contain an element a of order p.
- Show that any $b \notin \langle a \rangle$ must have order 2.
- Because b, ab have order 2, G must be isomorphic to D_p .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●