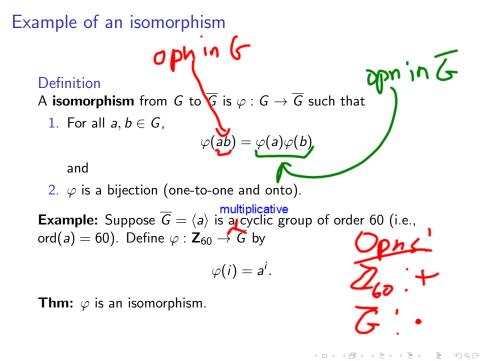
### Math 128A, Wed Sep 30

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Reading for today and for Mon: Ch. 7.
- PS05 due Mon.
- Problem session Fri Oct 02, 10:00–noon on Zoom.

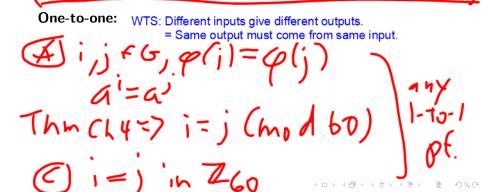
InA Finding cycle shapes of permutations in S\_6 and A\_6 (abchet (abcde)(f) 5+1 (rbcA)(et)(abch)(e)(t) 10 +1 Remember: Even length cycles are odd perms (- ) Odd length cycles are even perms Hot these (G(For 1).5.4.



#### Well-defined:

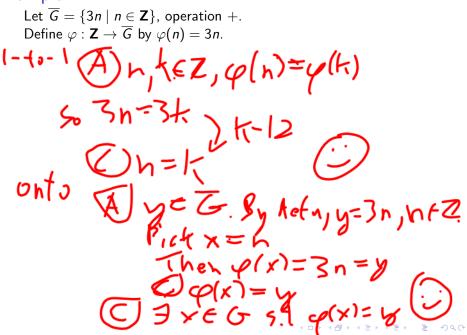
Ambiguity in formula for phi: If the number i is only specified (mod 60), is there only one possible meaning for a^i?

Yes: Thm from Ch.4 that says: If ord(a) = 60, then  $a^i = a^j$  if and only if  $i=j \pmod{60}$ . So in particular, if  $i=j \pmod{60}$ , then  $a^i=a^j$ , which means that the RHS of the formula is unambiguous.



WTS: Every element of codomain gets hit as an output. Onto: EG 1 So y= a" for nea A) ictx=n (mod 60+ Then O 5.t. 6/x **Operation-preserving:** equall  $\varphi(i+j) =$ ) \* م (i)Ø(i)

Example



Op pros = himom prop Dn.kEZ  $\varphi(n+k) = 3(n+k)$  $\varphi(n+q) = 3n+3k^{2}y^{2}$ Note: phi is a homomorphism b/c of distributive law.  $() \varphi(n+k) = \varphi(n) + \varphi(k) ()$ 

#### Example? ( $\bigvee \psi \psi \rangle$ ) $\mathbf{R}^*$ is nonzero reals, operation $\times$ . Define $\varphi : \mathbf{R}^* \to \mathbf{R}^*$ by $\varphi(x) = 3x$ . Is $\varphi$ an isomorphism?

preservig)

# Cayley's Theorem

Theorem

Really saying: Every group is a group of symmetries of itself as a geometric object.

Every group G is isomorphic to a permutation group on the set G.

Sketch of proof: Define  $T_g: G \to G$  by  $f_g(x) = gx.$ 

Let  $\overline{G} = \{T_g \mid g \in G\}$ , operation composition. Can show that each  $T_g$  is a permutation and that  $\overline{G}$  is a group. Now define  $\varphi : G \to \overline{G}$  by

$$\varphi(g)=T_g.$$

To prove  $\varphi$  is an isomorphism, we need to:

Gonto

g(1)- 6(9)6

In book: This is the interesting part.

Ze,WTS.

How and why are isomorphic groups the same?

Theorem  $\varphi: G \to \overline{G}$  an isomorphism,  $a, b \in G$ . Then 1.  $\varphi(e) = \overline{e}$ . 2.  $\varphi(a^n) = \varphi(a)^n$ . 3. a and b commute  $\Leftrightarrow \varphi(a)$  and  $\varphi(b)$  commute. 4.  $G = \langle a \rangle \Leftrightarrow \overline{G} = \langle \varphi(a) \rangle$ . 5.  $\operatorname{ord}(a) = \operatorname{ord}(\varphi(a)).$ 6.  $x^k = b$  and  $\overline{x}^k = \varphi(b)$  have the same number of solutions. 7.  $\varphi^{-1}: \overline{G} \to G$  is also an isomorphism. 8. G and  $\overline{G}$  have same number of elements of each order. 9. G abelian  $\Leftrightarrow \overline{G}$  abelian. 10.  $\varphi$  sends subgroups of G to subgroups of  $\overline{G}$ , and vice versa.

11.  $\varphi$  sends the center of G to the center of G.

<del>oof of one</del> of those preserved properties a preserves. identity beingeydig powers beingeydig being abelian orkers of etts "http://www. subgrs, subgplattire center

## Proving that groups are **not** isomorphic

Not enough to pick some  $\varphi: G \to \overline{G}$  and show  $\varphi$  isn't an isomorphism — maybe there's a different map that is! But just as two people with different eye colors can't be genetic twins, two groups with different characteristics can't be isomorphic. **Example:** Two groups of order 10 that aren't isomorphic?

Zio abelian Sonot Do nun-abelian isim.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

**Example:** Prove that  $D_6$  and  $A_4$  aren't isomorphic.

# Automorphisms

### Definition

An **automorphism** of G is an isomorphism from G to itself.

An automorphism of G isn't used to show that G is the same as itself; it shows a certain symmetry in the structure of G.

#### Definition

 ${\it G}$  a group,  ${\it a} \in {\it G}.$  Define  $\varphi_{\it a}: {\it G} \rightarrow {\it G}$  by

$$\varphi_a(x) = axa^{-1}$$

for all  $x \in G$ . We call  $\varphi_a$  an inner automorphism of G.

**Try at home:** Prove that  $\varphi_a$  is an automorphism of *G*. Can show that the following are groups:

$$\begin{aligned} \mathsf{Aut}(G) &= \{ \mathsf{all automorphisms of } G \} \\ \mathsf{Inn}(G) &= \{ \mathsf{all inner automorphms of } G \} \\ &= \{ \varphi_a \mid a \in G \} . \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Cosets

# Definition G a group, H a subgroup, $a \in G$ . Define

$$egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} eta & eta &$$

We call Ha the **left coset of** H **in** G **containing** a, and we call aH the **right coset of** H **in** G **containing** a.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

## Examples

 $G = U(24), H = \{1, 5, 7, 11\}.$ 

$$G = S_4$$
,  $H = \langle (1 \ 2 \ 3) \rangle = \{\epsilon, (1 \ 2 \ 3), (1 \ 3 \ 2) \}.$ 

Cosets via equivalence relations

 $H \leq G$ ,  $a, b, c \in G$ .

Definition

Define  $a \sim b$  to mean that  $a^{-1}b \in H$ .

Theorem

 $\sim$  is an equivalence relation on G.



#### Cosets are equivalence classes

What are equivalence classes of  $\sim$ ? The class of  $a \in G$  is:

$$\{b \in G \mid a \sim b\} = \{b \in G \mid a^{-1}b \in H\}$$
$$= \{b \in G \mid b \in aH\}$$
$$= aH.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

So left cosets of H are equivalence classes of an equivalence relation, which means that left cosets of H partition G: