Math 128A, Mon Sep 28

HW revisions: Submitted in a separate Gradescope assignment Please only submit the problems you want to change.

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: Ch. 6. Reading for Wed: Ch. 7.
- PS04 due tonight. Outline for PS05 due Wed.
- Problem session Oct 02, 10:00–noon on Zoom.

If you want to discuss exam, please come to office hours: M 2-3, W 1-2

Even and odd permutations

Recall: Theorem Every $\alpha \in S_n$ is a product of 2-cycles. Lemma $F_{\epsilon}(\xi)$ If $\epsilon = \beta_1\beta_2...\beta_r$, where each β_i is a 2-cycle, then r is even. Theorem For $\alpha \in S_n$, exactly one of the following is true: α is a product of an even number of 2-cycles; or

α is a product of an odd number of 2-cycles.

Proof: Suppose

$$\alpha = \beta_1 \dots \beta_k = \gamma_1 \dots \gamma_m,$$

= ((5)/(4)/(3)/(2)

where each β_i and γ_j is a 2-cycle.

(x - r)

But remember, the inverse of a 2-cycle is a 2-cycle. So the LHS is a product of m+k 2-cycles that is equal to the identity, so by the Lemma, m+k is even.

whit both on L by (r. .. r)

Therefore, m and k are either both even or both odd, which is what we wanted to prove.

<u>また</u> (12345)~=(54321) =(15432)

The alternating group

Definition

If α is product of an even number of 2-cycles, we say α is **even**; if α is product of an odd number of 2-cycles, we say α is **odd**.

Prev thm says that a permutation is either odd or even, but not both. $(v \ge 2)$

Fact (Thm)/Defn: Even permutations in S_n form a subgroup of S_n called the **alternating group** of degree n, written A_n . Why is A_n a subgroup?

 $0. \in = (12)(12), so \in A_{h}$

@ 7 something in An

d BEAN

So $q = \sigma_1 \sigma_2 \cdots \sigma_k$, heren $\sigma_{ij} \tau_j = arcles$ $\beta = \tau_i \tau_i = \tau_n$, meven So ab= 0, 02. 04 7, 7, Th is prod of K+m 2-rydes K+m is even, since th, meven So all is prod of even # 2-cycles Key! Z. (inverse)

Az= { 6, [123], (132)] $A_{3} = \{ \epsilon_{1}(12)(34), (13)(24), (14)(23),$ (124), (142), (134)(143)(234)(243) $A_{5} = \{ (12)(34), 14 \text{ other } (ab)(CA) \}$ (123), 19 other (abc), (1234), 14 other (abc), (1234), 19 other (abc), (1234

Size of A_n

Theorem

Foreshadowing of Ch 7!

For $n \ge 2$, A_n is exactly half the size of S_n , i.e., $|A_n| = \frac{n!}{2}$.

Proof: Consider the set

$$O = (12)A_n = \{ (12)\sigma | \sigma \in A_{n} \}$$

= $\{ (12) \in (12)(123), (12)(12), \dots \}$
= three 2-cycles

(123) = (12)(23)

Since every permutation of A_n is even, and we multiply each permutation in A_n by the 2-cycle (1 2) to get an element of O, every permutation in O is odd. So O is contained in the set of odd permutations of S_n.

Conversely, suppose alpha is an odd permutation. Then:

But (12) B= (12) (12) d=d, SO LED

It follows that O is precisely the set of all odd permutations in S_n.

Sketch of the rest of the proof: Remains to show that A_n and O have same number of elements. One way to prove that is to prove that there is a bijection from A_n to O, such as:

$$F:A \rightarrow 0$$
 by $F(\sigma) = (12)\sigma$. Prove that f is one-to-one and onto.

Cycles as odd and even permutations

The disjoint cycle form of alpha contains an *even* number of cycles of *even* length.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

See: PS04 #7(b).

Isomorphisms

You've seen (PS04 #1) that Z_{60} is "the same" as a multiplicative cyclic group $\langle a \rangle$ of order 60. What do we mean by "the same?"

Definition

A isomorphism from G to \overline{G} is $\varphi : G \to \overline{G}$ such that $\varphi(ab) = \varphi(a)\varphi(b)$ $\varphi(ab) = \varphi(a)\varphi(b)$ $\varphi(ab) = \varphi(a)\varphi(b)$ $\varphi(ab) = \varphi(a)\varphi(b)$ $\varphi(ab) = \varphi(a)\varphi(b)$ $\varphi(ab) = \varphi(a)\varphi(b)$

To say that G and \overline{G} are **isomorphic** means that there exists an isomorphism $\varphi : G \to \overline{G}$.

We will see that we can think of isomorphic groups as being "the same" in terms of group theory.

Example

$$Z_{10} = \{0, \dots, 59\}, +(m, d)$$

cyclic group of order 60 (i.e., ord(a) = 60).

Suppose $\overline{G} = \langle a \rangle$ is a cyclic group of order 60 (i.e., $\operatorname{ord}(a) = 60$). Define $\varphi : \mathbb{Z}_{60} \to \overline{G}$ by $\varphi(i) = a^{i}$.

Thm: φ is an isomorphism. Well-defined:

Onto (A) a C G $(\bigcirc \exists a \in \mathbb{Z}_{60} \text{ s.t. } (da) = \overline{a}$ Operation-preserving: A) a, b & G = Z60 orining opining $(\varphi(x+b)=\varphi(x)\varphi(b)$

500

Example

Let $\overline{G} = \{3n \mid n \in \mathbb{Z}\}$, operation +. Define $\varphi : \mathbb{Z} \to \overline{G}$ by $\varphi(n) = 3n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example?

 \mathbf{R}^* is nonzero reals, operation \times . Define $\varphi : \mathbf{R}^* \to \mathbf{R}^*$ by $\varphi(x) = 3x$. Is φ an isomorphism?

Cayley's Theorem

Theorem

Every group G is isomorphic to a permutation group on the set G. Sketch of proof: Define $T_g : G \to G$ by

$$T_g(x) = gx.$$

Let $\overline{G} = \{T_g \mid g \in G\}$, operation composition. Can show that each T_g is a permutation and that \overline{G} is a group. Now define $\varphi : G \to \overline{G}$ by

$$\varphi(g) = T_g.$$

To prove φ is an isomorphism, we need to:

How and why are isomorphic groups the same?

Theorem $\varphi: G \to \overline{G}$ an isomorphism, $a, b \in G$. Then 1. $\varphi(e) = \overline{e}$. 2. $\varphi(a^n) = \varphi(a)^n$. 3. a and b commute $\Leftrightarrow \varphi(a)$ and $\varphi(b)$ commute. 4. $G = \langle a \rangle \Leftrightarrow \overline{G} = \langle \varphi(a) \rangle$ 5. $\operatorname{ord}(a) = \operatorname{ord}(\varphi(a))$. 6. $x^k = b$ and $\overline{x}^k = \varphi(b)$ have the same number of solutions. 7. $\varphi^{-1}: \overline{G} \to G$ is also an isomorphism. 8. G and \overline{G} have same number of elements of each order. 9. G abelian $\Leftrightarrow \overline{G}$ abelian 10. φ sends subgroups of G to subgroups of \overline{G} , and vice versa. 11. φ sends the center of G to the center of G.

Proving that groups are **not** isomorphic

Not enough to pick some $\varphi: G \to \overline{G}$ and show φ isn't an isomorphism — maybe there's a different map that is! But just as two people with different eye colors can't be genetic twins, two groups with different characteristics can't be isomorphic. **Example:** Two groups of order 10 that aren't isomorphic?

Example: Prove that D_6 and A_4 aren't isomorphic.

