Math 128A, Wed Sep 23

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: Ch. 5. Reading for Mon: Ch. 6.
- Outline for PS04 due tonight; completed version due Mon Sep 28.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problem session Fri Sep 25, 10:00–noon on Zoom.

Cycle notation for permutations

Theorem

Every permutation is a product of disjoint cycles.

Proof by (an example of) algorithm: In S_{12} , take $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 9 & (9 & 1) & 1^2 \\ 4 & 7 & 3 & 6 & 8 & 1 & 2 & 12 & 5 & 1 & 10 & 9 \end{pmatrix}$

Then starting with 1:

Take the smallest number i not yet included in a cycle;
Figure out the cycle containing i: and often omit fixed pts

- Figure out the cycle containing i; and
- ▶ Repeat until every element of $\{1, ..., 12\}$ is in a cycle

$\alpha = (146111)(27)(3)$

(58129) cycle form of alpha $X = (146110)(27)(58129)^{2}$ You try

Convention: Each cycle is written with earliest number first, and cycles sorted by their starting number. This makes each permutation have a unique cycle form.

$(1 \ge 3)$ = (231) = (513)

Definition

The **cycle form** of a permutation α is α expressed as a product of disjoint cycles.

Given:

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 5 & 4 & 2 & 6 & 7 & 1 & 3 \end{pmatrix} \quad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 5 & 2 & 8 & 7 \end{pmatrix}$$

Compute $\alpha\beta$ and the cycle forms of α , β , and $\alpha\beta$.

 $\alpha \beta = \begin{pmatrix} 1 & 2 & 2 & 4 & 5 & 6 & 7 \\ 4 & 7 & 2 & 8 & 6 & 5 \\ 4 & 7 & 2 & 8 & 6 & 5 \\ \end{pmatrix}$

Next-level computation: Computing products in cycle form

$$\alpha = (1 \ 8 \ 3 \ 4 \ 2 \ 5 \ 6 \ 7)$$

 $\beta = (1 \ 3 \ 4)(2 \ 6)(7 \ 8)$

 $\alpha\beta = (14,8)(2,7,3)(5,6)$

If you want to stick with converting to the 2-line form, that's fine! But if you want to get faster, this is the way to do it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Permutations in cycle form

Definition

The **cycle form** of a permutation α is α expressed as a product of disjoint cycles.

Theorem

Disjoint cycles commute.

Proof by playing cards!

It a p disj rycles, 2B=Ba

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Order of a permutation in cycle form

Theorem

The order of a permutation written in cycle form is the LCM of its cycle lengths.

Proof: Suppose $\alpha = \beta \gamma$, where β and γ are disjoint cycles. Because disjoint cycles commute:

$$\alpha^n = \beta^n \gamma^n.$$

 β and γ permute disjoint sets, so to get $\alpha^n = \epsilon$, need to have $\beta^n = \gamma^n = \epsilon$. So *n* must be a common multiple of the lengths of β and γ , and the smallest such *n* is the least common multiple of the cycle lengths.

Examples

 $OV \lambda(\lambda) = 8$

(abete)

(1)(1)(1)

(abc)(Ae)

Orders of elements: $\alpha = (1 \ 8 \ 3 \ 4 \ 2 \ 5 \ 6 \ 7), \ \beta = (1 \ 3 \ 4)(2 \ 6)(7 \ 8).$

ord(B)=L(M(3,2,2)-6

Possible cycle shapes of elements of S_5 , and their orders:

4+1

3+2

3+1+1

A D > A P > A B > A B >

э

 $(xb_l)(A)(c)$ Ordering ways to sum positive integers, sorted in decreasing order, to a total of 5 (# of ways to do this is called # of *partitions* of 5.)

(x b) (c d) (t) 2+2+1 2(x b) (c d) (t) 2+2+1 2(x b) (c) (A Ye) 2+1+1+1 2(a) (b) (c) (d) (c) (41+1+1+1) 1

p(n) = # of partitions of n, in the above sense.

If you could write down an efficient formula for computing p(n), you could get a job for life at a university or the NSA (or organized crime).

Products of 2-cycles

Theorem

Every $\alpha \in S_n$ is a product of 2-cycles.

Proof: Consider

$$(1\ 2)(2\ 3)(3\ 4)(4\ 5) =$$

 $(1\ 2\ 3\ 4\ 5)$

Same pattern shows that any k-cycle is the product of k - 1 2-cycles.

And then recall that any permutation is the product of k-cycles

(日)

Even and odd permutations

Lemma If $\epsilon = \beta_1 \beta_2 \dots \beta_r$, where each β_i is a 2-cycle, then r is even. Theorem

For $\alpha \in S_n$, exactly one of the following is true:

• α is a product of an **even** number of 2-cycles; or

• α is a product of an **odd** number of 2-cycles.

Proof: Suppose

$$\alpha = \beta_1 \dots \beta_k = \gamma_1 \dots \gamma_m,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where each β_i and γ_j is a 2-cycle.

The alternating group

Definition

If α is product of an even number of 2-cycles, we say α is **even**; if α is product of an odd number of 2-cycles, we say α is **odd**.

Prev thm says that a permutation is either odd or even, but not both.

Fact (Thm)/Defn: Even permutations in S_n form a subgroup of S_n called the **alternating group** of degree n, written A_n . Why subgroup:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Size of A_n

Theorem

For $n \ge 2$, A_n is exactly half the size of S_n , i.e., $|A_n| = \frac{n!}{2}$. **Proof:** Consider the set

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$(1 \ 2)A_n =$$

Cycles as odd and even permutations

So if α is a product of disjoint cycles, α is an even permutation ⇔

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ