Math 128A, Mon Nov 30

» Use a laptop or desktop with a large screen so you can read
these words clearly.

v

In general, please turn off your camera and mute yourself.

v

Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

Please always have the chat window open to ask questions.
Last reading in the course: Ch. 14.
PS10 due tonight; outline for PS11 due Wed Dec 02.

Problem session, Fri Dec 04, 10:00am—noon on Zoom.
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FINAL EXAM



Rings

A ring is a set R with binary operations + and - (multiplication) \
such that:

(Abelian group, 4 axioms) The operation + gives R the structure

of an abelian group, with (additive) identity 0 and

the inverse of a written —a.
(Associativity of multiplication) For all a, b, c € R, (ab)c = a(bc).
(Distributive) For all a,b,c € R, a(b+ ¢) = ab+ ac and

(a+ b)c = ac + bc. -

(Rings with unity) If there exists 1 € R such that 1a = al = a for
all a€ R and 1 # 0, we say that 1 is a unity (or
multiplicative identity) in R.

(Commutative rings) If ab = ba for all a, b € R, we say that R is
commutative.

Think: Rings axiomatize the properties of a number system.



Question: What is the difference between the ring of polynomials with
coefficients in R and the ring of real-valued functions on R?

Surface answer: Every real polynomial defines a function on R, but not every
function on R comes from a polynomial (e.g., exponential function).

Deeper answer: In 128B, we look at polynomials not just as functions, but also
(and more importantly) as abstract algebraic expression in their own right. It
turns out to be important to think of p(x) = x"2 + 4x + 5 as an algebraic
expression independently of plugging something into it.



Review: What are the fundamental problems of group
theory?

From 30,000 fE

» Structure: Understand subgroups and

» Homomorphisms and factor groups: Understand
homomorphisms, factor groups (i.e., normal subgroups), and
relationship between them (1IT).

» Classification: Find a list of all possible groups of a given
order (or: all abelian groups of a given order).

Classifications that we've done (or at least understood):

* All finite abelian groups

* Groups of order p, order 2p (not necessarily abelian), order p*2
*Orders 1, 2, 3,4,5,6,7, (not8), 9,10, 11. 8 has additional
complications, and 12 has new types of groups.



What are the fundamental problems of ring theory?
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» Structure: Understand subrings. P; Q

» Homomorphisms and factor o = Understand
homomorphisms, factor rings (which are defined as
we'll see), and relationship between them (1IT).

» Number theory: Motivated by number theory:
» Factorization: When do elements of a ring factor uniquely
into “primes”?
> Field extensions: If we start with (say) Q and add in some
algebraic numbers (e.g., v/2, ¥/—5), what is the structure of

the resulting ring?
Background motivation: Solving equationsl!
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|deals
Subring Test:

* (A nonempty)
* A closed under subtraction
C * A closed under multiplication
Definition
Let A be a subring of a ring R. To say that A is an ideal of R
means that:

for every r € R, and not just every r € A

\__and every a € A, both ra and ar are in A. e

That is, A is closed not just under multiplication by elements of A
(as is any subring), A is closed under multiplication by elements of
the bigger ring R. (So when we talk about ideals, we have to be
clear what the bigger ring R is.)

Note: Ideals are very different from subgroups in several ways.

E.g., every subgroup of a group G contains the identity e.

But even though every subring contains 0, and therefore every ideal contains 0,
if an ideal A of R contains 1, then A must contain *all* of R.



Ideal test

Recall that a nonempty A C R is a subring of R if and only if A is
closed under subtraction and multiplication. Combining this with
the definition of ideal:

Theorem
Let A= () be a subset of a ring R. Then A is an ideal of R if and
only if the following conditions all hold:

» (Closed under subtraction) For all a,b € A, we have
a—beA.

» (Closed under R-multiplication) For all a € A and r € R, we

have that ra € A and ar € A.
A/C@ ﬁ}, cA ((’f\-

(A closed under subtraction) (A closed under R-mult)
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Examples

Even numbers are:

* closed under subtraction

* closed under mult by *any*
integer, even or odd

A=2Z={2k | keZ} L2Vl

» For R = Z, we have the ideal

of R=12.

» More generally, for any fixed n € Z, we have the ideal
nZ ={kn| k € Z}

of R=12. (all multiples of that fixed n)
» For R = R[x], the set

A= {f(x) | (0) = 0}

(i.e., polynomials with constant term 0) is an ideal of R[x].
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Finitely generated ideals
Even more generally:

Theorem
Let R be a commutative ring, and let a be a fixed element of R.
Then —

(a) ={ra|reR}
is an ideal of R, called the principal ideal generated by a.

Even more generall
& Y all R-linear combinations of a_1,...,a_k

<a1,...,ak>:{r131+~-—l—rkak\r,-ER}

is an ideal of R, called the ideal generated by a;, ..., ax.
Proof that (a) is an ideal:

A== {m reRY
@X,gé <d>
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Examples and non-examples

» Let R=Rand let A=Z. Then A is a subring of R, but A is
not an ideal of R because:
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» Let R =R[x] and
A= {f(x)| f(0)=0}.

Then A = (x), which means that A is a principal ideal (i.e.,
generated by a single element). It is true but very much not
obvious that every ideal of R = R[x] is principal.

» Let R = R[x, y] (real polynomials in two variables, and let

A= {f(x,y)| f(0,0) = 0},

which is again the set of all (two-variable) polynomials with
constant term 0. Then A = (x,y), but A is not principal
(again, true but very much not obvious).



Factor rings

Given an ideal A of a ring R, we can define the factor ring R/A as
follows.

> Set: We define R/A to be the set of (additive) cosets of A in
R, i.e.,
R/A={r+A|reR}.

» Operations: For r,s € R, we define
(r+A)+(s+A)=(r+s)+A
(r+A)(s+ A) = (rs) + A
As with groups, we might worry that these operations are not
well-defined. However:

Theorem
The above operations are well-defined, and give R/A the structure
of a ring.



Proof that factor rings are well-defined

As with groups, the hard part is to prove that the operations are
well-defined.

(r+A)+(s+A)=(r+s)+A
(r+A)(s+A) =(rs)+ A



