Math 128A, Mon Nov 02

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- ▶ Reading for today: Ch. 10. Reading for Wed: Ch. 11.
- PS08 outline due today, full version due Wed.
- ▶ Problem session, Fri Nov 06, 10:00–noon on Zoom.

Remember: Next week, we meet on Mon Nov 09 only. (Wed Nov 11 is Veterans Day.)

Recap of homomorphisms

Definition

 G,\overline{G} groups. To say that $\varphi:G\to\overline{G}$ is a **homomorphism** means that for all $a,b\in G$,

$$\varphi(ab) = \varphi(a)\varphi(b)$$
.
(replace * with + as appropriate)

Definition

If $\varphi: \mathcal{G} \to \overline{\mathcal{G}}$ is a homomorphism, we define the **kernel** of φ to be

$$\ker \varphi = \{a \in G \mid \varphi(a) = \overline{e}\}\,,$$
 "By their kernels shall ye know them"

where \overline{e} is the identity in \overline{G} .

We also saw that homomorphisms preserve or reduce a lot of element structure, e.g., $\operatorname{ord}(\varphi(g))$ divides $\operatorname{ord}(g)$.

Images and pullbacks

Definition

If $\varphi: X \to Y$ is a map, $S \subseteq X$, and $T \subseteq Y$, then

$$\varphi(S) = \{ \varphi(x) \mid x \in S \}$$
 image of S under phi
= $\{ y \in Y \mid y = \varphi(x) \text{ for some } x \in S \}$

The fact that we write phi^{-1} doesn't mean phi is invertible

$$arphi^{-1}(T) = \{x \in X \mid arphi(x) \in T\}$$
 inverse image, or pullback, of T

 $\varphi(\varphi(\tau)) \leq T$ (but maybe not =)

I.e., $\varphi^{-1}(T)$ is the set of all inputs x that produce an output in T; and $\varphi(S)$ is the set of all outputs y that are hit by some input in

S. Picture:

Homomorphisms preserve, reduce, pull back subgp structure

Suppose $\varphi: G \to \overline{G}$ is a homomorphism, $a, b, g \in G$, $K = \ker \varphi$. Suppose also $H \leq G$, $\overline{H} \leq \overline{G}$. Then:

- 1. $\varphi(H)$ is a subgroup of \overline{G} .
 - 2. If H cyclic, $\varphi(H)$ cyclic.
 - 3. If H abelian, $\varphi(H)$ abelian.
- Converse is not true
- 4. If $H \triangleleft G$, then $\varphi(H) \triangleleft \varphi(G)$. (But $\varphi(H)$ might not be normal in all of G.)
- 5. If |K|=n, then φ is an n-to-1 map. (In particular, if K is trivial, then φ is one-to-one.) "by their kernels shall ye know them"
- 6. $\varphi^{-1}(\overline{H})$ is a subgroup of G.

etc.

Key point to remember is that $\varphi(H)$ might be less complicated than H, and $\varphi^{-1}(\overline{H})$ might be more complicated than \overline{H} .

B/(FISABOP, G/A) - EFT But 4/4) = G(A)

() a' Eq-1(H)

Kernels are normal subgroups

Thm. Suppose $\varphi: G \to \overline{G}$ is a homomorphism, $a, b, \ \in G$, $K = \ker \varphi$. Then:

K is a normal subgroup of G.

 $\varphi(a) = \varphi(b)$ if and only if aK = bK. "By their kernels shall ye know them"

So φ(xqx")=ē. (C)×αx' ∈ kerφ Pt 2 p(a)= q(b) 7 multionL (=) q(b) q(a)= e) by q(b) 1 (=) q(b) a = e) q homom defin terror b) a= k for tet (h) (h) (=) aK=bK K= Kerq

Example
$$\varphi(x+y) = 2 (x+y)$$
 $\varphi: \mathbf{Z}_{20} \to \mathbf{Z}_{20}$ given by $\varphi(x) = 2x$. $= 2x + 2y = (-1/4) + (-1/4)$

For several $g \in \mathbf{Z}_{20}$, compare $\operatorname{ord}(g)$ vs. $\operatorname{ord}(\varphi(g))$:

 $\operatorname{Ord}(3) = \{0\} =$

The First Isomorphism Theorem

11)
$$\varphi:G\rightarrow G$$
 | $terp=T$
 $G/T \approx \varphi(G) \varphi(G) \approx G/K_{11} \varphi$

In fact, we've already seen most of this: Define $\Phi: (G/\ker \varphi) \to \varphi(G)$ by

$$\Phi(a\ker\varphi)=\varphi(a).$$

- Since $\varphi(a) = \varphi(b)$ if and only if $a \ker \varphi = b \ker \varphi$, we see that Φ is well-defined (if) and one-to-one (only if).
- $ightharpoonup \Phi$ is a homomorphism because φ is.

Example: G/Z Theorem

Recall: Inn(G) is the group of all automorphisms of G of the form

$$\varphi_{\mathsf{a}}(\mathsf{x}) = \mathsf{a}\mathsf{x}\mathsf{a}^{-1},$$

the group of inner automorphisms of G.

Theorem

$$G/Z(G) \approx \operatorname{Inn}(G)$$
.

Example: Internal direct products

Definition

To say that G is the **internal direct product** of H and K means:

- $ightharpoonup H \lhd G$ and $K \lhd G$;
- ightharpoonup G = HK; and
- $\blacktriangleright H \cap K = \{e\}.$

Theorem

If G is the internal direct product of H and K, then $G \approx H \oplus K$.

Lemma

If G is the internal direct product of H and K, then for $h \in H$, $k \in K$, hk = kh.

Normal subgroups are kernels

We saw that every kernel is a normal subgroup. Conversely, every normal subgroup is the kernel of some homomorphism:

Theorem

For $N \triangleleft G$, the map $\varphi : G \rightarrow (G/N)$ given by

$$\varphi(a) = aN$$

is a homomorphism with kernel N.

Proof isn't that interesting; point is more that normal subgroups and homomorphisms are really two different ways of looking at the same phenomenon.