Sample Exam 2 Math 127, Spring 2021

1. (10 points) Let F be a field, and let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in F^n . Define what it means for $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ to be linearly independent.

For questions 2–4, you are given a statement. If the statement is true, you need only write "True", though a justification may earn you partial credit if the correct answer is "False". If the statement is false, write "False", and justify your answer **as specifically as possible**. (Do not just write "T" or "F", as you may not receive any credit; write out the entire word "True" or "False".)

2. (10 points) If W is a subspace of \mathbf{F}_{17}^9 such that dim W = 4, and $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a subset of W, then it must be the case that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ does **not** span W.

3. (10 points) Let **u** and **v** be nonzero vectors in \mathbf{F}_7^{11} . Then it must be the case that the span of $\{\mathbf{u}, \mathbf{v}\}$ contains exactly two vectors.

4. (10 points) Let f(x) be a polynomial of degree 2 in $\mathbf{F}_{11}[x]$, and suppose that

$$f(x) = p_1(x)p_2(x) = q_1(x)q_2(x),$$

where each of $p_1(x)$, $p_2(x)$, $q_1(x)$, and $q_2(x)$ has degree 1. Then it must be the case that $p_1(x)$ is equal to either $q_1(x)$ or $q_2(x)$.

5. (12 points) Let \mathcal{C} be the binary linear code of length 5 with parity check matrix

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix}.$$

Find a generator matrix for C. Show your work.

6. (12 points) Let A be a matrix with entries in \mathbf{F}_5 such that

A =	$\begin{bmatrix} 1 & 0 & 2 & 2 & 1 & 1 \\ 0 & 2 & 2 & 1 & 1 & 1 \end{bmatrix}$,	RREF(A) =	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \end{array}$	21	0 0	$\frac{1}{3}$	$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 2 & 2 & 1 & 1 & 1 \\ 3 & 0 & 1 & 2 & 3 & 2 \\ 0 & 1 & 1 & 2 & 3 & 4 \end{bmatrix}$								4 0	

Find bases for Col(A) and Null(A). Show your work.

7. (12 points) Consider $a(x) = x^5 + x^4 + x^3 + 1$ and $b(x) = x^3 + x^2$ in $\mathbf{F}_2[x]$, and note that

$$\begin{aligned} x^5 + x^4 + x^3 + 1 &= (x^2 + 1)(x^3 + x^2) + (x^2 + 1), \\ x^3 + x^2 &= (x + 1)(x^2 + 1) + (x + 1), \\ x^2 + 1 &= (x + 1)(x + 1). \end{aligned}$$

(I.e., you are given the above facts and do not need to check them yourself.)

Find $f(x), g(x) \in \mathbf{F}_2[x]$ such that $f(x)a(x) + g(x)b(x) = \gcd(a(x), b(x))$. Show your work and clearly indicate your answer.

8. (12 points) Let W be the subset of \mathbf{F}_7^3 defined by

$$W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbf{F}_7^3 \middle| x_1 = x_2 \right\}.$$

Prove that W is a subspace of \mathbf{F}_7^3 , in the following steps:

(a) Explain why $\mathbf{0} \in W$.

0

- (b) Suppose $\mathbf{x}, \mathbf{y} \in W$. Explain why $\mathbf{x} + \mathbf{y} \in W$.
- (c) Suppose $\mathbf{x} \in W$ and $a \in \mathbf{F}_7$. Explain why $a\mathbf{x} \in W$.

9. (12 points) Recall that the parity check matrix of the Hamming 7-code \mathcal{H}_7 is

$$H_7 = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

 $\label{eq:suppose of the second sec$

 $\mathbf{y} = \begin{bmatrix} 0\\1\\0\\0\\1\\1\\1 \end{bmatrix}$. Correct \mathbf{y} to a codeword \mathbf{y}' , if necessary, and read off the message bits 3, 5, 6,

and 7 to find the intended message \mathbf{m}' . Show all your work.