
Math 127, Wed Apr 28

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: 9.3–9.5. Reading for next Wed: 10.1–10.3.

I PS09 due tonight.

I Exam 3, Mon May 03.

I Exam review Fri Apr 30, 10am–noon.





Recap/foreshadowing: What you really need to know
about ω

Let N be a positive integer, and let ω = ωN = e2πi/N .

1. The solutions to zN = 1 are precisely the powers
1, ω, ω2, . . . , ωN−1.

2. Fact:
1 + ω + · · ·+ ωN−1 = 0.

Why the last equation:



Signals

Definition
Fix N ∈ N. We define a signal to be a function f : Z/(N)→ C, or
in other words, a complex-valued function with domain Z/(N).
Note that a signal f is defined by its N values
f (0), . . . , f (N − 1) ∈ C, so we sometimes represent a signal f in

vector form as

 f (0)
...

f (N − 1)

.

Example: Let ω = e2πi/N be the natural primitive Nth root of
unity in C. We define the basic trigonometric signal
ek : Z/(N)→ C by ek(n) = ωkn. We can also represent ek in

vector form as


1
ωk

...

ω(N−1)k

.



Examples: ek for N = 12, k = 0, 1, 2, 3, 4



Orthogonality Lemma

Fix N ∈ N and let ω = ωN = e2πi/N be the natural primitive Nth
root of unity in C. For t ∈ Z/(N), we have:

N−1∑
k=0

ωtk =

{
N if t = 0 (mod N),

0 otherwise.

Proof: See PS10.
In particular, if t = 1:



A motivating problem

Motivating Problem

Fix N ∈ N. How can we express any signal on Z/(N) as a linear
combination of the basic trigonometric signals ek , 0 ≤ k ≤ N − 1?

Solving this problem has many applications (e.g., analysis of
music/sound production) but we’ll concentrate on one: making
multiplication faster. (!!)



The Discrete Fourier Transrom

Fix N ∈ N, let ω = e2πi/N be the natural primitive Nth root of
unity in C, and let f : Z/(N)→ C be a signal.

We define the Discrete Fourier Transform, or DFT, of f to be
the function f̂ : Z/(N)→ C given by

f̂ (k) =
1

N

N−1∑
n=0

f (n)ω−kn.

(Think of f̂ (k) not as a signal, but as the “spectrum” of f .)



Example: DFT for N = 4



DFT in matrix form

 f̂ (0)
...

f̂ (N − 1)



=
1

N


1 1 1 . . . 1

1 ω−1 ω−2 . . . ω−(N−1)

1 ω−2 ω−2(2) . . . ω−2(N−1)

...
...

...
. . .

...

1 ω−(N−1) ω−2(N−1) . . . ω−(N−1)(N−1)


 f (0)

...
f (N − 1)

 .

The point: Applying the DFT is matrix-vector multiplication, and
therefore, O(n2).



The inverse DFT

Definition
Let f̂ : Z/(N)→ C be a spectrum function. The inverse DFT of
f̂ is defined to be

N−1∑
k=0

f̂ (k)ωkn.

Basically the same as the DFT, but with a sign change and

without the
1

N
. However:

Theorem (Inversion Theorem)

Fix N ∈ N, let ω = e2πi/N be the natural primitive Nth root of
unity in C, and let f : Z/(N)→ C be a signal. If f̂ is the DFT of
f , then

f (n) =
N−1∑
k=0

f̂ (k)ωkn.



Matrix-vector version of inverse DFT

 f (0)
...

f (N − 1)

 =


1 1 1 . . . 1

1 ω1 ω2 . . . ω(N−1)

1 ω2 ω2(2) . . . ω(N−1)2

...
...

...
. . .

...

1 ω(N−1) ω2(N−1) . . . ω(N−1)(N−1)


 f̂ (0)

...

f̂ (N − 1)



I.e.: If T̂ has kth column ek , then T̂

 f̂ (0)
...

f̂ (N − 1)

 =

 f (0)
...

f (N − 1)

.

Since this is the linear combination of the columns of T̂ with

coefficients taken from

 f̂ (0)
...

f̂ (N − 1)

, we see that the f̂ are the

coeffs that express f as a lin comb of the basic trig signals ek .



Example: Inverse DFT for N = 4



Convolution (one application of the DFT)

We now explain why, if you were able to complete the DFT
quickly, it would lead to a fast multiplication algorithm, or
something pretty close to it. First:

Definition
Let f , g : Z/(N)→ C be signals. We define the convolution of f
and g to be the signal f ∗ g : Z/(N)→ C defined by

(f ∗ g)(n) =
1

N

N−1∑
t=0

f (n − t)g(t).



Convolution of signals is polynomial multiplication

Theorem
Let f , g : Z/(N)→ C be signals. Then in the ring C[x ]/(xN − 1),
we have that(

1

N

N−1∑
k=0

f (k)xk

)(
1

N

N−1∑
m=0

g(m)xm

)
=

1

N

N−1∑
n=0

(f ∗ g)(n)xn.

The details aren’t crucial — the point is, if you want to multiply
two complex polynomials mod xN − 1, it’s enough to compute the
convolution of the corresponding signals.

Real motivation: If N is several times larger than the degrees of f
and g , multiplication mod xN − 1 is the same as multiplication of
f and g , which is pretty close to multiplying two integers.



DFT(convolution) = pointwise product of DFTs

Theorem
Let f , g : Z/(N)→ C be signals. We have that

(̂f ∗ g)(k) = f̂ (k)ĝ(k).

So if we know f̂ (k) and ĝ(k), we just do the above multiplication

N times to find (̂f ∗ g)(k) for 0 ≤ k ≤ N − 1. This kind of
“pointwise product” is an O(N) procedure.



An algorithm for fast polynomial multiplication

Motivating Problem

Compute the product of two polynomials in C[x ]/(xN − 1) whose
coefficients are given by f (n) and g(n). In other words, given two
signals f (n) and g(n), compute the convolution (f ∗ g)(n).

Note that polynomial multiplication is usually O(N2).

First attempted algorithm. Suppose we have two signals
f , g : Z/(N)→ C.

1. Compute the DFTs f̂ (k) and ĝ(k).

2. For all k ∈ Z/(N), let ĥ(k) = f̂ (k)ĝ(k).

3. Compute the inverse DFT h(n) of ĥ(k).

Step (2) is O(N), but if we compute the DFT through standard
matrix multiplication, the other two steps are still O(N2).



The punchline

By the end of the course, we’ll see an algorithm, called the Fast
Fourier Transform, that computes the DFT in O(N logN) time.
This gives an algorithm for multiplying polynomials of degree N
that is 2 ∗ O(N logN) + O(N) = O(N logN). In fact, Schönhage
and Strassen turned this into an algorithm for multiplying N-digit
integers that is O(N logN log(logN)):

But to understand the FFT, we first need to understand groups.


