Math 127, Mon Apr 19

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 8.2–8.3 (reload book). Reading for Wed: 8.4–8.5.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- PS08 due tonight, PS09 outline due Wed night.
- Problem session Fri Apr 23, 10am-noon.

Building better codes (review)

- An [n, k, d] code C is a binary linear code of length n, dimension k, and minimum distance d. In other words, C is a subspace of Fⁿ₂, dim C = k as a subspace of Fⁿ₂, and the smallest nubmer of 1s appearing in a nonzero codeword of C is d. So we transmit n bits to communicate k bits of data w/error correction.
- We would like k/n to be as large as possible, because k/n represents the portion of each transmitted message that contains useful data.

It follows that to create a good code, we need to find [n, k, d] codes where both k and d are as large as possible, given n.

Cyclic codes

Definition

Let C be a binary linear code of length n. To say that C is **cyclic** means that it is closed under cyclic permutation of coordinates.

That is, to say that \mathcal{C} is cyclic means that if

so are
$$\begin{bmatrix} c_{n-1} \\ c_0 \\ c_1 \\ \vdots \\ c_{n-2} \end{bmatrix}$$
, $\begin{bmatrix} c_{n-2} \\ c_{n-1} \\ c_0 \\ \vdots \\ c_{n-3} \end{bmatrix}$, and so on.

hat if
$$\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_{n-1} \end{bmatrix}$$
 is in C , then

 $\begin{bmatrix} c_0 \end{bmatrix}$

Polynomial notation: What is xc(x)?

 $c(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$ in the ring $R = \mathbf{F}_2[x]/(x^n - 1)$ (i.e., setting $x^n = 1$). If $c(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$, then in $F_{2}[x]/(x^{n}-1)$, we have: $xc(x) = c_{0} X + c_{1} X^{2} + (z_{2} X^{3} + \dots + c_{n} - 2X^{n-1})$ = $c_{n-1}^{+} c_{0} X + c_{1} X^{2} + \dots + c_{n-2} X^{n-1}$

The **polynomial notation** for vectors in \mathbf{F}_2^n represents \vdots as

Which, if we change that vector back from polynomial notation to standard vector notation, we get:

We see that $x^*c(x)$ gives exactly the cyclic permutation of the codeword c.

Therefore, if C is a cyclic code, we have the property that:

** If c(x) is in the code C, then so is xc(x) **

In other words, put in polynomial form in the ring $R = F_2[x]/(x^n-1)$, a cyclic code C is closed under multiplication by x.

Cyclic codes are ideals

Extrapolating that same idea (see PS09), we see that a cyclic code C: (with its vectors written in polynomial notation):

- Contains the zero polynomial, which corresponds to the zero vector;
- Is closed under polynomial addition; and
- ▶ Is closed under multiplication by any $f(x) \in \mathbf{F}_2[x]$.

But we have a name for that kind of subset of a ring. That's called an ideal. (!!!!)

Theorem

Let C be a binary linear code of length n. In polynomial notation, C is cyclic if and only if it is an ideal of the ring $\mathbf{F}_2[x]/(x^n - 1)$. **Proof:** PS09.

x^s EC NR=F.(~7/ 4-1 (~4-1) $(\chi^2 + \chi + i) (\chi + \chi^2)$ = x + x + + x + x - X+1+x+x=1+x268

And $1+x^2$ is, in fact, an element of the code C, as we would expect, since C is an ideal of R.

The generator polynomial of a cyclic code

Recall: $F_2[x]$ is a principal ideal domain, i.e., if I is an ideal of $F_2[x]$, then I = (g(x)), the set of all multiples of the fixed polynomial g(x).

Fix a positive integer n, and let C be a nonzero cyclic code of length n, i.e., let C be a nonzero ideal of $\overline{R} = \mathbf{F}_2[x]/(x^n - 1)$. Then C is principal, or in other words, C = (g(x)) for some $g(x) \in \mathbf{F}_2[x]$. Moreover, we can choose g(x) so that g(x) divides $x^n - 1$.

Why: Can show that C comes from an ideal I of $\mathbf{F}_2[x]$. $\mathbf{F}_2[x]$ is a principal ideal domain (!!), so I = (g(x)) where g(x) is the minimal polynomial of I. By taking gcds, we can take g(x) to be a divisor of $x^n - 1$.

Definition

Theorem

Let C be a cyclic code of length n. We define the generator polynomial of C to be the minimal polynomial g(x) of C. Can take g(x) to be divisive of x^{-1} Therefore, if we want to study cyclic codes of length n, we need only look at all possible factors of the polynomial $x^n - 1$.

In other words, we don't really get to make up cyclic codes of length n -- they're more like objects of nature waiting for us to discover.

E={0, 1+x, 1+x, 1+y, x+x,x+x,x+x,x+x,1+x+x+x) Can check &= (1+x), i.e., mults of 1+x in F2[x]/(x+-1) $E_{1}, | + \chi^{3} = (1 + \chi)(1 + \chi + \chi^{2})$

The generator matrix of a cyclic code (length of code) -(degree of generator) Theorem Let C be a cyclic code of length n generated by the divisor $g(x) \in \mathbf{F}_2[x]$ of $x^n - 1$. If deg g(x) = r, then the set $\mathcal{B} = \left\{g(x), xg(x), \dots, x^{(n-1)-r}g(x)\right\}$ is a basis for C. Consequently, the dimension of C if k = n - r. **Example:** Let C be the cyclic code of length 6 generated by \ge (1 + x), which divides $x^6 - 1$ (since -1 = +1). The theorem says: O

Generator matrix of a cyclic code (proof)

Spanning: See PS09.

Generators of cyclic codes: The upshot

(Summary of 8.2 and 8.3)

Suppose g(x) divides $x^n - 1$ in $\mathbf{F}_2[x]$. Let $\overline{R} = \mathbf{F}_2[x]/(x^n - 1)$.

- The principal ideal of R generated by g(x) defines a cyclic code C of length n.
- ▶ The set $\{g(x), xg(x), \dots, x^{(n-1)-r}g(x)\}$ is a basis for C, and so the dimension of C is k = n r.

Note: Coding and reading correctly received codewords can be done using polynomial multiplication and division, so we'll concentrate on being able to correct errors in principle (i.e., because of having a large minimum distance).

Big and difficult question: How can we compute the minimum distance of a cyclic code C? Or at least, how can we ensure some kind of lower bound for the minimum distance of C?

Extension fields

h irr

Definition

An extension of a field F is a field E that contains F as a subfield. A finite extension of a finite field \mathbf{F}_q is an extension E of \mathbf{F}_q such that E itself is a finite field.

Key example: If *E* is a finite field of characteristic 2 then one of the Five Facts for Finite Fields says that *E* contains F_2 as a subfield. So *E* is a finite extension of F_2 .

 $E = \prod_{x \in X} \frac{1}{(m(x))}$

Factoring over E vs. over \mathbf{F}_2

Definition

Let *E* be an extension of the field *F*, and suppose $f(x) \in F[x]$. To say that f(x) factors over *F* means f(x) = g(x)h(x) with $g(x), h(x) \in F[x]$, and to say that f(x) factors over *E* means f(x) = g(x)h(x) with $g(x), h(x) \in E[x]$. Irreducible over *F* and irreducible over *E* are defined similarly.

Example Think: If f(x) is irreducible over E, it must also be irreducible over F, but not the other way around.

The polynomial $x^3 + x + 1$ is irreducible over \mathbf{F}_2 , but if α is a root of $x^3 + x + 1$ in \mathbf{F}_8 , then $\mathbf{A}^3 = \mathbf{A} + \mathbf{I}$

$$x^{3} + x + 1 = (x - \alpha)(x - \alpha^{2})(x - \alpha^{4}).$$

Chark: +1=-1

 $(\pi t_{\alpha})(\chi t_{\alpha}^{2})(\chi t_{\alpha}^{4})$ $= (x^{2} + (\alpha + \alpha^{2}) \times + \alpha^{3})(x + \alpha^{4})$ $= \chi^{3} + (\chi + \chi^{2} + \alpha^{4}) \chi^{2} + (\chi^{5} + \chi^{6}) \chi$ $= D + \chi^{7}$ $\chi^{3} + \chi + |= 0 \qquad 1$ $\chi^{4} + \chi^{2} + \chi = 0$ $\alpha^{5} = \chi^{7} + \alpha^{2} = \alpha^{2} + \alpha + 1$ $\alpha^{b} = \lambda^{3} + \lambda^{2} + \alpha^{2} = \alpha^{2} + 1 \quad \alpha^{2} = \lambda^{2} + \lambda^{2}$

The BCH Theorem

Let C be a cyclic code of length n generated by the divisor $g(x) \in \mathbf{F}_2[x]$ of $x^n - 1$. Suppose E is an extension of \mathbf{F}_2 such that for some $\delta \in \mathbf{N}$ and some $\alpha \in E$ with the order of α exactly equal to n, we have that

$$0 = g(\alpha) = g(\alpha^2) = g(\alpha^3) = \cdots = g(\alpha^{\delta-1}).$$

Then the minimum distance d of C is at least δ , i.e., $d \ge \delta$.

Example: n = 7, $g(x) = x^3 + x + 1$.