Math 127, Wed Apr 14

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 8.1–8.2 (reload book). Reading for Mon: 8.3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- PS08 outline due tonight, full version due Mon.
- Problem session Fri Apr 16, 10am–noon.

 $B(a,b)=\{ra+sb|r,s\in R\}$ $\frac{r, b \text{ fixed in } R}{(4, 7) = \{7r + 4s \mid r, s \in \mathbb{Z}\}}$ Like: In Fn: Span (X, W)={ry+sw |r, SEF}

These two constructions reservble each other because both span{v,w} and (a,b) (ideal generated by a and b) are special cases of a more general concept.

Symmetries of the roots of a polynomial, ver. 2

The point of studying automorphisms:

phi *fixes* the coefficients of f(x)

Theorem

Let R be a ring, let $\varphi : R \to R$ be an automorphism of R, and let

$$f(x) = a_n x^n + \dots + a_1 x + a_0$$

be a polynomial with coefficients in R such that $\varphi(a_i) = a_i$ for $0 \le i \le n$. For $\alpha \in R$, if $f(\alpha) = 0$, then $f(\varphi(\alpha)) = 0$.

Special case/the point: Let $f(x) \in \mathbf{R}[x]$ be a polynomial with *real* coefficients. If a + bi is a *complex* root of f(x), then because the automorphism of complex conjugation leaves f unchanged ("invariant"), a - bi is also a root of f(x). (In other words, nonreal roots of real polynomials come in conjugate pairs.)

See: Algebra II, differential equations....

Order and characteristic

1 added to itself n times, which you can think of as the integer n inside the ring R

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

Definition

The **order** of a field F is defined to be the number of elements in F; i.e., **finite field** is a field of finite order.

Definition

Let *R* be a ring. To say that *R* has characteristic n > 0 means that *n* is the smallest positive integer such that $n \cdot 1 = 0$.

Theorem

Let F be a finite field. Then char(F) = p for some prime p. So every finite field contains a copy of F_p for some prime p.

 If you study groups in abstract algebra (Math 128A), then char(R) is exactly the additive order of 1.

More vocabulary

Definition "F times" Let F be a field. We use F^{\times} to denote the set of all nonzero elements of F, and call F^{\times} the **multiplicative group** of F.

Definition Last time: <a> for F_{17}

Let F^{\times} be the multiplicative group of the field F, and suppose $\alpha \in F^{\times}$. We define the **cyclic subgroup generated by** α to be $\langle \alpha \rangle = \{\alpha^n \mid n \in \mathbb{Z}\}$, i.e., the set of all powers of α , positive, negative, or zero.

Definition

To say that F^{\times} is **cyclic** means that there exists some $\alpha \in F^{\times}$ such that $F^{\times} = \langle \alpha \rangle$, i.e., every element of F^{\times} is some power of α . If $F^{\times} = \langle \alpha \rangle$, we say that α is a **primitive** element of F.

Theorem

If F is a finite field, then its multiplicative group F^{\times} is cyclic. In other words, every finite field contains a primitve element.

Q: Is there an easy way to find primitive elements in a finite field, or do we just have to guess a bunch?

A: No human being knows. (!!!!)

If you could find an answer to that, you would earn yourself a PhD, and depending on how good your answer is, you could become (math) famous.

Conjecture (50-60 years old): 2 is primitive in F_p "unless there's an obvious reason it isn't" (e.g., if p-1 is a power of 2).

Another definition of order

Definition

Let F^{\times} be the multiplicative group of the field F, and suppose $\alpha \in F^{\times}$. If $\alpha^n = 1$ for some positive integer n, we define the **order** of α to be the *smallest* possible n such that $\alpha^n = 1$. Otherwise, if $\alpha^n \neq 1$ for all positive integers n, we say that α has infinite order

Theorem

Let F be a field of order n, let F^{\times} be the multiplicative group of F, and suppose $\alpha \in F^{\times}$. Then:

1. The order of α is equal to the order of (number of elements in) $\langle \alpha \rangle$. It follows that α is primitive if and only if the order of α is equal to n - 1, the order of F^{\times} .

2. If k is the order of α , then the order of α^m is $\frac{k}{\gcd(k,m)}$.

J. If k is the order of α , then k divides n - 1 (the order of F^{\times}).

 $F = F_{11}, |F_{12}| = 16$

So the (multiplicative) order of any element is 1, 2, 4, 8, or 16.

So the order of 3 is neither 1, 2, 4, or 8, so it must be 16, and 3 is primitive.

<u>h||2|3|4|5|6|7|</u> <u>3"|3|9|0|4|5|15|6|</u> <u>13 -2 ||</u>

By Thm part (1), we will eventually hit all nonzero elements of F_{17} as powers of 3.

order (3)=16 $order(3h) = \frac{16}{g(d(m,16))}$ m=2 order $(3^{2})=\frac{16}{2}=8=0$ rder(3)m=2 order $(3^{3})=\frac{16}{1}=16$ So | Dalso prim mod 17. m=6 Order $(3^{\circ}) - \frac{16}{gcd(6/6)} = \frac{16}{2} = 8$ So order (-2)=8.

The magic polynomial

Corollary

Let F be a field of order q. Then every α is a root of the polynomial $x^q - x \in F[x]$, and consequently,

$$x^q - x = \prod_{\alpha \in F} (x - \alpha).$$

Proof:

Because order(alpha) divides q-1, alpha⁴q-1} = 1 for any nonzero alpha in F.

So
$$\lambda$$
 is a root of $\chi T' - 1$.
 $\chi^{T} - \chi = \chi(\chi^{T'} - 1)$ has those zeros
and also D.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We also know that a is a root of f(x) exactly when (x-a) divides f(x).

SO (X-2) div Xa-X for LEF But F has gelts, and x2-x Air by TT (x-d), a poly Acgq SO $x^{r}-x = TT(x-x)$ $E \times Mod 17$ (mod 17) $\chi^{17} - \chi = (\chi)(\chi - 1)(\chi - 1)(\chi - 16)$

Deeper facts about finite fields

Theorem

Let F be a finite field of characteristic p. Then F is isomorphic to $\mathbf{F}_p[x]/(m(x))$ for some irreducible polynomial $m(x) \in \mathbf{F}_p[x]$. So the order of a finite field must be p^e for some prime p and some positive integer e. More surprisingly:

Theorem

deg

Let p be a prime, and let e be a positive integer.

- 1. There exists at least one field of order p^e .
- 2. If F and K are both finite fields of order p^e, then F and K are isomorphic.

I.e., for any prime p and some positive integer e, there is only one field of order $q = p^e$.

Ex Over #, x + x + 17 both and x 3 + x+1) irred So both $\mathbb{H}_{1}(x)/(x^{2}+x^{2}+1), \mathbb{H}_{2}(x)/(x^{2}+x+1)$ are both fields order & Thm > they are (som

Five Facts for Finite Fields

- 1. **Prime power:** The characteristic of a finite field must be a prime p, and its order must be $q = p^e$ for some $e \ge 1$.
- Orders of elements: The multiplicative group of a finite field is cyclic; i.e., if F has q elements, F[×] must contain at least one element of order q − 1. Moreover, every element of F[×] must have order dividing q − 1.
- Magic polynomial: If F is a field of order q, then every α ∈ F is a root of x^q x, or in other words, α^q = α for every α ∈ F. Consequently, x^q x factors as the product of all (x β), where β runs over all elements of F.
- Construction: Every finite field of characteristic *p* is isomorphic to F_p[x]/(m(x)) for some irreducible polynomial m(x).
- 5. Classification: For any prime p and $q = p^e$ ($e \ge 1$), there exists a field \mathbf{F}_q of order q that is unique up to isomorphism.

Example: One approach to the field of order 8 Construction, magic polynemial, orders of elements:

See 7.7. (Warked exs.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Building better codes (review) of CL.6

- An [n, k, d] code C is a binary linear code of length n, dimension k, and minimum distance d. In other words, C is a subspace of Fⁿ₂, dim C = k as a subspace of Fⁿ₂, and the smallest nubmer of 1s appearing in a nonzero codeword of C is d.
- We would like k/n to be as large as possible, because k/n represents the portion of each transmitted message that contains useful data.

It follows that to create a good code, we need to find [n, k, d] codes where both k and d are as large as possible, given n.

Example: Longer Hamming codes

For an integer $r \ge 2$, let $n = 2^r - 1$, and let H_n be the $k \times n$ matrix whose *i*th column $(1 \le i \le n)$ is the binary digits of the integer *i*, e.g., for r = 3 and r = 4:

The **Hamming** *n*-code \mathcal{H}_n has parity check matrix H_n .

Theorem So code is nullspace of matrix H_n. For an integer $r \ge 2$ and $n = 2^r - 1$, the Hamming n-code \mathcal{H}_n is an [n, n - r, 3] code (so we can correct 1 error per transmission). As $r \to \infty$, transmit almost 100% data, but can't correct much.

Cyclic codes

Definition

Let C be a binary linear code of length n. To say that C is **cyclic** means that it is closed under cyclic permutation of coordinates.

That is, to say that $\mathcal C$ is cyclic means that if

so are
$$\begin{bmatrix} c_{n-1} \\ c_0 \\ c_1 \\ \vdots \\ c_{n-2} \end{bmatrix}$$
,
$$\begin{bmatrix} c_{n-2} \\ c_{n-1} \\ c_0 \\ \vdots \\ c_{n-3} \end{bmatrix}$$
, and so on.

イロト イヨト イヨト

Polynomial notation: What is xc(x)?

 $c(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$ in the ring $R = \mathbf{F}_2[x]/(x^n - 1)$ (i.e., setting $x^n = 1$). If $c(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$, then in $\mathbf{F}_2[x]/(x^n - 1)$, we have:

xc(x) =

A D N A 目 N A E N A E N A B N A C N

Cyclic codes are ideals

Theorem

Let C be a binary linear code of length n. In polynomial notation, C is cyclic if and only if it is an ideal of the ring $\mathbf{F}_2[x]/(x^n - 1)$. **Proof:** PS09.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The generator polynomial of a cyclic code

Theorem

Fix a positive integer n, and let C be a nonzero cyclic code of length n, i.e., let C be a nonzero ideal of $\overline{R} = \mathbf{F}_2[x]/(x^n - 1)$. Then C is principal, or in other words, C = (g(x)) for some $g(x) \in \mathbf{F}_2[x]$. Moreover, we can choose g(x) so that g(x) divides $x^n - 1$.

Definition

Let C be a cyclic code of length *n* over \mathbf{F}_q . We define the **generator polynomial** of C to be the minimal polynomial g(x) of C.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Next time

Theorem

Let C be a cyclic code of length n generated by the divisor $g(x) \in \mathbf{F}_2[x]$ of $x^n - 1$. If deg g(x) = r, then the set

$$\mathcal{B} = \left\{g(x), xg(x), \dots, x^{(n-1)-r}g(x)\right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is a basis for C. Consequently, the dimension of C is k = n - r.