Math 127, Mon Apr 12

» Use a laptop or desktop with a large screen so you can read
these words clearly.

» In general, please turn off your camera and mute yourself.

» Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

P> Please always have the chat window open to ask guestions.

» Reading for today: 7.6-7.7. Reading for We(
(reload book).

» PS07 due tonight; PS08 outline due Wed night. Brand new!

» Problem session Fri Apr 16, 10am—noon.




Computation in F[x]/(m(x )) o notation ___ =

F a field, m(x) € F[x] (degm = k > 0), I = (m(x)) (the
polynomial multiples of m(x)). Abbreviate & = x + /. Working
mod /, we have: Think: F[x)/(m(x)) is just like Z/(m).

» Elements: The cosets of / in F[x], which we can write as
ike — r(a) whérg/degr < k, Yince setting m(a) = 0 allows you to
0,...m-1 " reduce any polynomial of degree > k.

More specifically, if deg m = k, then you rewrite m(a) = 0 as

a reduction relation o% = --- and apply that repeatedly to

reduce any higher-degree terms to terms of degree < k.

F ]

» Operations: Addition and multiplication are computed in
polynomials in « and then reduced. l.e., you use the relation
m(a) = 0 to choose a reduced representative for the final

answer.
Reciprocal of b(«) by computing ged(b(x), m(x)) and Euclidean
Reduction for polynomials. 'q.- FIx)/(m

Cor: R is a field if and only if m(x) is irreducible.



Homomorphisms and isomorphisms

Definition
Let R and R’ be rings. To say that a function ¢ : R — R’ is a
homomorphism means that for all r,s € R,

o(r+s) =p(r) + ¢(s), o(rs) = @(r)p(s).

In other words, a homomorphism is a function between rings that
preserves addition and multiplication.

Definition

An isomorphism is a bijective (one-to-one and onto)
homomorphism. To say that rings R and R’ are isomorphic means
that there exists some isomorphism ¢ : R — R'.

One point of isomorphisms: When two rings R and R}are
isomorphic, they're really the same ring, using different names. In
particular, they have the same abstract properties (units, zero
divisors, principal ideals, etc.).



Recap of complex b‘[ )._T. - b :
conjugation ﬁ“" 4

ES PN :S“Zi
I, 5_4-.): AT (3}2)
) RN
_h A Re

5220 at(3-2)



Automorphisms

Another reason to be interested in isomorphisms:
Defn: An automorphism is an isomorphism ¢ : R — R from a
ring to itself. Interesting b/c phi reveals a symmetry of the ring R.

Exmp: Let ¢ : C — C be ¢(a+ bi) = a— bi for a,b € R. Then ¢
is a homomorphism (PS08) and ¢ o ¢ is the identity, so ¢ is a
bijective homomorphism and therefore an automorphism of C.
Exmp: Let R be a ring, and let ¢ : R — R be an automorphism of

R. Define a map @ : R[x] — R[x] by @ capital

version
(®(F))(x) = @(an)x" + - - - + p(a1)x + ¢(ao). of phi
In other words, ((f))(x) is obtained by applying ¢ to the
coefficients of f(x). Then ® is an automorphism of R[x], called

the automorphism of R[x] induced by ¢. Think: Applying complex
conjugation to coefficients of

a polynomial.



Symmetries of the roots of a polynomial

Theorem

Let R be a ring, let ¢ : R — R be an automorphism of R, and let
® : R[x] — R[x] be the corresponding induced automorphism.
Then for f(x) € R[x] and o € R, if f(a)) =0, then

(O(F))(¢(a)) = 0.

Special case/the point: Let f(x) € R[x] be a polynomial with
real coefficients. If a+ bi is a complex root of f(x), then because
the automorphism of complex conjugation leaves f unchanged
(“invariant™), a — bi is also a root of f(x). (In other words,
non-real roots of real polynomials come in conjugate pairs.)

Example: Consider f(x) = x* + 5x? + 4. +—_ ()(2:" ‘ ) /YE\"L")
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So again, here, if (a+bi) is a root of f, so is its complex conjugate a-bi.
More generally, if alpha is a root of f, and phi is an automorphism of C
that fixes the coefficients of f, then phi(alpha) is also a root of f.



Order and characteristic )TM () \r "'A
Definition t“ H:—’:Y_l/ M(M')

The order of a field F is deﬁned to be the number of elements in

F; i.e., finite field is a field of finite order.
i.e., finite field is a field of finite order 'E___,)/Z/{P)';ﬂ'_P

Definition
Let R be a ring. Abbreviate n-1=1+---+4+ 1. Then either:
——

n times

1. n-1 =0 for some positive integer n; or -Z/(VVI\
2. n-10 for all positive integers n. p

In case (1), char(R) is the smallest positive integer n such that
n-1=0; and in case (2), char(R) = 0. char(R) = characteristic of R
Exmp: For R = Z/(m), char(R) = m.

plx] has characteristic p, and if m(x) € Fp[x] has
deg(m(x)) > 1 then F,[x]/(m(x)) also has characteristic p.



. \
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While F_p[x] has infinitely many elements, the coefficients are still all
mod p, so F_p has characteristic p. |.e., still true that p = 0.

Question: What do all finite fields look like?

Answer: They all look like F_p[x]/(m(x)).



Characteristic of a finite field

S Q1 - pm1)

\

Theorem v I -F

Let F be a finite field. Then char(F) = p for some prime p.

Point: If F is a finite field, then F has a copy of some Z/(p) =
sitting inside it. We can think of this copy of F, as a base on
which F is constructed.
Why:
Because F has finitely many elements, if we do 1+1+1+..., we eventually hit

0, so F must have characteristic n for some n>0.

If n=ab, 1<a,b<n, then from the distributive law, we get (eventually)

(@"1)(b"
=(1+.. +1) (1+...41)

4‘<{l;h~es = Lr'w£

=(ab*1)=n*1 =0. SoF would have zero divisors, which a field can't have.



Even more vocabulary

Definition
Let F be a field. We use F* to denote the set of all nonzero
elements of F, and call F* the multiplicative group of F.

N Groups are objects to be introduced later.
Definition

Let F* be the multiplicative group of the field F, and suppose
a € F*. We define the cyclic subgroup generated by « to be
(o) ={a" | n € Z}, i.e., the set of all powers of «, positive,
negative, or zero.

Definition

To say that F* is cyclic means that there exists some o € F*
such that F* = (a), i.e., every element of F* is some power of .
If F* = (a), we say that « is a primitive element of F.

Theorem
If F is a finite field, then its multiplicative group F* is cyclic. In
other words, every finite field contains a primitve element.



Alas, a different definition of order

Definition

Let F* be the multiplicative group of the field F, and suppose

a € F*. If o" =1 for some positive integer n, we define the order
of « to be the smallest possible n such that o” = 1. Otherwise, if
a =£ 1 for all positive integers n, we say that « has infinite order.

Theorem
Let F be a field of order n, let F* be the multiplicative group
of F, and suppose oo € F*. Then:

1. The order of « is equal to the order of (number of elements
in) (a). It follows that « is primitive if and only if the order of

a is equal to n — 1, the order of F*.
k

ged(k, m)’
3. If k is the order of «, then k divides n — 1 (the order of F*).

2. If k is the order of «, then the order of ™ is



Remember, there are two important definitions of the word "order":

* The order of a set of things (e.g., a field, the cyclic subgroup generated by
alpha) is the number of things in that set, i.e., its size.

* The (multiplicative) order of an element alpha is the smallest power n of alpha
such that alpha*n = 1.

Confusing! But Statement 1 of the above theorem shows that these two
meanings agree when they both occur, at least?

—\(V)_/



Example: Some orders of elements in Fy7 :Z() 7)
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Sze ot B = [F =16

In general, for a field of order q, the multlpllcatlve group has order g-1.
So part 3 of the Theorem says that order of any element of mult group of
F {17} has order dividing 16.
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The magic polynomial
Corollary

Let F be a field of order q. Then every « is a root of the
polynomial x? — x € F|x], and consequently,

x9—x= H(x—a).

a€eF

Proof:



Deeper facts about finite fields

Theorem
Let F be a finite field of characteristic p. Then F is isomorphic to
F,[x]/(m(x)) for some irreducible polynomial m(x) € Fp[x].

So the order of a finite field must be p¢ for some prime p and
some positive integer e. More surprisingly:
Theorem
Let p be a prime, and let e be a positive integer.
1. There exists at least one field of order p€.

2. If F and K are both finite fields of order p€, then F and K are
isomorphic

l.e., for any prime p and some positive integer e, there is only one
field of order g = p°©.



Five Facts for Finite Fields

1. Prime power: The characteristic of a finite field must be a
prime p, and its order must be g = p® for some e > 1.

2. Orders of elements: The multiplicative group of a finite field
is cyclic; i.e., if F has g elements, F* must contain at least
one element of order g — 1. Moreover, every element of F*
must have order dividing g — 1.

3. Magic polynomial: If F is a field of order g, then every
« € F is a root of x9 — x, or in other words, a9 = « for every
a € F. Consequently, x9 — x factors as the product of all
(x — ), where 3 runs over all elements of F.

4. Construction: Every finite field of characteristic p is
isomorphic to F,[x]/(m(x)) for some irreducible polynomial
m(x).

5. Classification: For any prime p and g = p¢ (e > 1), there
exists a field F, of order g that is unique up to isomorphism.



Example: One approach to the field of order 8

Construction, magic polynomial, orders of elements:



