
Math 127, Mon Apr 12

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: 7.6–7.7. Reading for Wed: 8.1–8.2
(reload book).

I PS07 due tonight; PS08 outline due Wed night.

I Problem session Fri Apr 16, 10am–noon.



Computation in F [x ]/(m(x)), α notation

F a field, m(x) ∈ F [x ] (degm = k > 0), I = (m(x)) (the
polynomial multiples of m(x)). Abbreviate α = x + I . Working
mod I , we have:

I Elements: The cosets of I in F [x ], which we can write as
r(α) where deg r < k, since setting m(α) = 0 allows you to
reduce any polynomial of degree ≥ k .
More specifically, if degm = k , then you rewrite m(α) = 0 as
a reduction relation αk = · · · and apply that repeatedly to
reduce any higher-degree terms to terms of degree < k .

I Operations: Addition and multiplication are computed in
polynomials in α and then reduced. I.e., you use the relation
m(α) = 0 to choose a reduced representative for the final
answer.

Reciprocal of b(α) by computing gcd(b(x),m(x)) and Euclidean
Reduction for polynomials.
Cor: R is a field if and only if m(x) is irreducible.



Homomorphisms and isomorphisms

Definition
Let R and R ′ be rings. To say that a function ϕ : R → R ′ is a
homomorphism means that for all r , s ∈ R,

ϕ(r + s) = ϕ(r) + ϕ(s), ϕ(rs) = ϕ(r)ϕ(s).

In other words, a homomorphism is a function between rings that
preserves addition and multiplication.

Definition
An isomorphism is a bijective (one-to-one and onto)
homomorphism. To say that rings R and R ′ are isomorphic means
that there exists some isomorphism ϕ : R → R ′.

One point of isomorphisms: When two rings R and R are
isomorphic, they’re really the same ring, using different names. In
particular, they have the same abstract properties (units, zero
divisors, principal ideals, etc.).





Automorphisms

Another reason to be interested in isomorphisms:
Defn: An automorphism is an isomorphism ϕ : R → R from a
ring to itself.

Exmp: Let ϕ : C→ C be ϕ(a + bi) = a− bi for a, b ∈ R. Then ϕ
is a homomorphism (PS08) and ϕ ◦ ϕ is the identity, so ϕ is a
bijective homomorphism and therefore an automorphism of C.
Exmp: Let R be a ring, and let ϕ : R → R be an automorphism of
R. Define a map Φ : R[x ]→ R[x ] by

(Φ(f ))(x) = ϕ(an)xn + · · ·+ ϕ(a1)x + ϕ(a0).

In other words, (Φ(f ))(x) is obtained by applying ϕ to the
coefficients of f (x). Then Φ is an automorphism of R[x ], called
the automorphism of R[x ] induced by ϕ.



Symmetries of the roots of a polynomial

Theorem
Let R be a ring, let ϕ : R → R be an automorphism of R, and let
Φ : R[x ]→ R[x ] be the corresponding induced automorphism.
Then for f (x) ∈ R[x ] and α ∈ R, if f (α) = 0, then
(Φ(f ))(ϕ(α)) = 0.

Special case/the point: Let f (x) ∈ R[x ] be a polynomial with
real coefficients. If a + bi is a complex root of f (x), then because
the automorphism of complex conjugation leaves f unchanged
(“invariant”), a− bi is also a root of f (x). (In other words,
non-real roots of real polynomials come in conjugate pairs.)

Example: Consider f (x) = x4 + 5x2 + 4.





Order and characteristic

Definition
The order of a field F is defined to be the number of elements in
F ; i.e., finite field is a field of finite order.

Definition
Let R be a ring. Abbreviate n · 1 = 1 + · · ·+ 1︸ ︷︷ ︸

n times

. Then either:

1. n · 1 = 0 for some positive integer n; or

2. n · 1 6= 0 for all positive integers n.

In case (1), char(R) is the smallest positive integer n such that
n · 1 = 0; and in case (2), char(R) = 0.

Exmp: For R = Z/(m), char(R) = m.
Exmp: Fp[x ] has characteristic p, and if m(x) ∈ Fp[x ] has
deg(m(x)) ≥ 1 then Fp[x ]/(m(x)) also has characteristic p.





Characteristic of a finite field

Theorem
Let F be a finite field. Then char(F ) = p for some prime p.

Point: If F is a finite field, then F has a copy of some Z/(p) = Fp

sitting inside it. We can think of this copy of Fp as a base on
which F is constructed.
Why:



Even more vocabulary

Definition
Let F be a field. We use F× to denote the set of all nonzero
elements of F , and call F× the multiplicative group of F .

Definition
Let F× be the multiplicative group of the field F , and suppose
α ∈ F×. We define the cyclic subgroup generated by α to be
〈α〉 = {αn | n ∈ Z}, i.e., the set of all powers of α, positive,
negative, or zero.

Definition
To say that F× is cyclic means that there exists some α ∈ F×

such that F× = 〈α〉, i.e., every element of F× is some power of α.
If F× = 〈α〉, we say that α is a primitive element of F .

Theorem
If F is a finite field, then its multiplicative group F× is cyclic. In
other words, every finite field contains a primitve element.



Alas, a different definition of order

Definition
Let F× be the multiplicative group of the field F , and suppose
α ∈ F×. If αn = 1 for some positive integer n, we define the order
of α to be the smallest possible n such that αn = 1. Otherwise, if
αn 6= 1 for all positive integers n, we say that α has infinite order.

Theorem
Let F be a field of order n, let F× be the multiplicative group
of F , and suppose α ∈ F×. Then:

1. The order of α is equal to the order of (number of elements
in) 〈α〉. It follows that α is primitive if and only if the order of
α is equal to n − 1, the order of F×.

2. If k is the order of α, then the order of αm is
k

gcd(k,m)
.

3. If k is the order of α, then k divides n − 1 (the order of F×).





Example: Some orders of elements in F17







The magic polynomial

Corollary

Let F be a field of order q. Then every α is a root of the
polynomial xq − x ∈ F [x ], and consequently,

xq − x =
∏
α∈F

(x − α). (1)

Proof:



Deeper facts about finite fields

Theorem
Let F be a finite field of characteristic p. Then F is isomorphic to
Fp[x ]/(m(x)) for some irreducible polynomial m(x) ∈ Fp[x ].

So the order of a finite field must be pe for some prime p and
some positive integer e. More surprisingly:

Theorem
Let p be a prime, and let e be a positive integer.

1. There exists at least one field of order pe .

2. If F and K are both finite fields of order pe , then F and K are
isomorphic

I.e., for any prime p and some positive integer e, there is only one
field of order q = pe .



Five Facts for Finite Fields

1. Prime power: The characteristic of a finite field must be a
prime p, and its order must be q = pe for some e ≥ 1.

2. Orders of elements: The multiplicative group of a finite field
is cyclic; i.e., if F has q elements, F× must contain at least
one element of order q − 1. Moreover, every element of F×

must have order dividing q − 1.

3. Magic polynomial: If F is a field of order q, then every
α ∈ F is a root of xq − x , or in other words, αq = α for every
α ∈ F . Consequently, xq − x factors as the product of all
(x − β), where β runs over all elements of F .

4. Construction: Every finite field of characteristic p is
isomorphic to Fp[x ]/(m(x)) for some irreducible polynomial
m(x).

5. Classification: For any prime p and q = pe (e ≥ 1), there
exists a field Fq of order q that is unique up to isomorphism.



Example: One approach to the field of order 8

Construction, magic polynomial, orders of elements:


