Math 127, Mon Mar 22
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Use a laptop or desktop with a large screen so you can read
these words clearly.

In general, please turn off your camera and mute yourself.

Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

Please always have the chat window open to ask questions.
Reading for today: 7.1-7.3.
PS06 due tonight, late deadline Fri Mar 26.

Exam 2 Wed Mar 24, on 3.5-3.6, 4.2-4.3, 5.3-5.6, and
6.1-6.4 (PS04-06). Review session at 3pm (recorded to
YouTube).



Questions on Ch. 6 and PS067

Make sure you know the following chain of definitions:

* To say H is parity check matrix of a binary linear code C means that
C = Null(H).

* Null(H) is the set of all x such that Hx = 0. In other words, in the
context of binary linear codes, we think of H as the matrix of a system
of linear equations (over F_2), and the code C is the solution set for
that system of linear equations. If we write out a basis for Null(H) as
the columns of a matrix G, that matrix G is a generator matrix for C.

Again, know your definitions:
* binary linear code

* parity check matrix

* generator matrix

* Null(H)

For example, 6.3.2(b): Need to list all of the codewords in a code C
given by a parity check matrix H.

To do that:

* Think of H as the matrix of a system of linear equations

* Solve H and get a basis for Null(H)=C

* Use that basis to list all possible vectors in C.



Q: Do you treat parity check bits differently from data bits?
A: No.
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By isolating just the transmission part, we
can get a better understanding of what is
possible in an error-correcting code.



|deals Z or F&(j

Maybe the most important definition in ring theory:
Definition
Let R be a (commutative) ring.” An ideal of R is | C R s.t.
1. (Zero) The zero element of R is contained in /.
2. (Closed under addition) If x,y € I, then x +y € I.

3. (Closed under R-multiplication) If x € / and r € R, then

N\ rx € 1.
<S. Comepare: Definition of subspace/subspace test

For a ring R: P
> The set {07is an ideal of R called the zero ideal.
» R is an ideal of itself.
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More interesting examples
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Classes of examples

R a ring. \Q'-‘—" 2/ F‘[;(j

» For fixed a € R, the set
(a) = {ra | r € R}={all R-multiples of a}

is called the principal ideal generated by a.
» For fixed a, b € R, the set

(a,b) ={ra+sb|r,s € R}

is called the ideal generated by a and b.
> For F a field and a € F, the set

I, ={f(x) € F[x] | f(a) =0}

is an ideal of F([x].



Quotient rings

One of the most important uses of ideals is to mod out by them.
Specifically:
How can we make sense of F[x]/(m(x)) the same way
we made sense of Z/(m)?

(And to be honest, we never really addressed all of the details of
making sure that Z/(m) works, so we'll do that too.)



Cosets Cosets are a fancy way of defining modular equivalence!

Let R be a ring, and let / be an ideal of R. For r € R, we define
the additive coset r + [ to be

r+l={r+alael}.

If the context is clear, instead of saying “additive coset”, we just
say coset. -

Example: What are the cosets of (3)/in-Z.? O 4
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When are elements in the same coset?

Theorem
R be a ring, | be an ideal of R, r,s € R. TFAE:
1. r+1=s+1 (ie, the cosets r+ | and s+ | are the same set).

2. res+1.

Proof: (1) = (2) = (3) = (4); (4) = (1) on HW.
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Definition \./

To say that r is a representative of the coset s + / means that
res—+1.



Definition of quotient ring

Let R be a ring and let / be an ideal of R. We define the quotient
ring R/ as follows.

» Set: The elements of R// are the cosets of / in R. Note that
if r and s represent the same coset of /, then the cosets r + /
and s + [ are actually the same element of R//, since
r+1=s+1.

» Addition: For r +/,s+ 1 € R/I, we define the sum

(r+D)+(s+1)=(r+s)+1.
» Multiplication: For r+ /,s+ 1 € R/I, we define the product
(r+D(s+1)=rs+1.

The zero element of R/ is 04/ = [, and the one element is 1+ /.



Example: Z/(3)

Let R =Z, | = (3) (the multiples of 3 in Z).
Elements:

0=+, | <7 2+

Multiplication table:
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So this really is the same Z/(3) we've been talking aLl!:)‘lft_‘EII algﬁg.




The potential problem with quotients
When we define:

(r+D)+(6+)=(r+s)+1  (r+1)(s+1)=(rs)+1

Could it be the case that you get a different answer if you use
different representatives for the cosets r + / and s + /7
Theorem: No, everything works fine. (l.e., the operations in a
quotient ring are well-defined and don’t depend on our choice of
coset representative )
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Review/revision: Computation in Z/(m)

Let | = (m) (the integer multiples of m). Working mod /, we have:

» Elements: The cosets of / in Z, which we can write as
0+/1,1+1,...,(m—1)+1, or {0,...,m— 1} for short, since
division by m gives remainders between 0 and m — 1.

» Operations: Addition and multiplication are computed in Z
and then reduced mod /. l.e., you use division by m with
remainder to choose a reduced representative for the final
answer.

Example:



Computation in F[x]/(m(x)), version 1

F a field, m(x) € F[x] (degm > 0), | = (m(x)) (the polynomial
multiples of m(x)). Working mod /, we have:

» Elements: The cosets of / in F[x], which we can write as
r(x) 4+ I where deg r(x) < deg m(x), since division by m(x)
gives remainders of degree < deg m(x).

» Operations: Addition and multiplication are computed in
F[x] and then reduced mod /. l.e., you use division by m(x)
with remainder to choose a reduced representative for the
final answer.

Example:



Computation in F[x]/(m(x)), version 2
F a field, m(x) € F[x] (degm > 0), | = (m(x)) (the polynomial
multiples of m(x)). Abbreviate & = x + I. Working mod /, we
have:

» Elements: The cosets of / in F[x], which we can write as
r(a)) where deg r < deg m, since setting m(a) = 0 allows you
to reduce any polynomial of degree > deg m.

» Operations: Addition and multiplication are computed in
polynomials in o and then reduced. l.e., you use the relation
m(«) = 0 to choose a reduced representative for the final
answer.

Example:



