Math 127, Wed Mar 17

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- ▶ Reading for today: 6.4, 7.1. For Mon: 7.2–7.3.
- PS06 outline due Wed night, full version due Mon.
- ▶ Problem session Fri Mar 19, 10am–noon.
- ► Exam 2 in one week, on 3.5–3.6, 4.2–4.3, 5.3–5.6, and 6.1–6.4 (PS04–06). Review session Mon night (recorded to YouTube).

The Hamming 7-code \mathcal{H}_7

 \mathcal{H}_7 is the nullspace of the parity check matrix

$$H_7 = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$
. Col i of H_7 is the binary digits of the number i (written backwards/upwards).

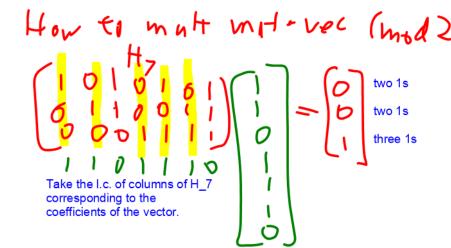
▶ Data bits x_3 , x_5 , x_6 , and x_7 , and

$$x_1 = x_3 + x_5 + x_7$$

 $x_2 = x_3 + x_6 + x_7$
 $x_4 = x_5 + x_6 + x_7$.

- Transmit x, receive y.
- Let $\mathbf{s} = H_7 \mathbf{y} \in \mathbf{F}_2^3$. syndrome of y
 If $\mathbf{s} = \mathbf{0}$, $\mathbf{y} \in \mathcal{H}_7$;
 else \mathbf{s} is binary digit of bit to correct.

Msg. 0(10 X=0+1+0=1 An example Fix bit 4.



Extension: The Hamming 8-code \mathcal{H}_8

 \mathcal{H}_8 is defined to be the nullspace of the parity check matrix

Note:

So to be consistent with the Hamming 7-code, we write $\mathbf{x} \in \mathcal{H}_8$ as

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_7 \end{bmatrix}.$$
 So the last three rows of parity check matrix H_8 say precisely that bits x_1...x_7 are a codeword from Hamming 7.

Key properties of \mathcal{H}_8

Theorem

The Hamming 8-code \mathcal{H}_8 is the Hamming 7-code \mathcal{H}_7 , extended by a parity check bit x_0 ; and \mathcal{H}_8 corrects 1 error and detects 2 errors. See PS06.

Hamming 8-code is often used in ECC plug-in memory:

Generalizations?

Can we find other, similar codes, but maybe better?

Definition

An [n, k, d] binary code is a binary linear code C such that:

- ► C has length n; # of bits in each codeword # of vectors in a basis for C
- $ightharpoonup \dim \mathcal{C} = k$; and # of vectors in a pasis for \mathcal{C} = # of data bits in the message m
- ightharpoonup d is the smallest number of nonzero coordinates appearing in a nonzero codeword of C.

The numbers n, k, and d are called the **length**, **dimension**, and **minimum distance** of respectively.

Examples

Example: Parity check code of length
$$n+1$$
.

high dim, less EC

Example: Repetition code of length n .

low dim, more EC

Example: Hamming code \mathcal{H}_7 .

 $(7,4,3)$

Example: Hamming code \mathcal{H}_8 .

 $(8,4,4)$

An IDEA: Look at a code using geometry

Ex:
$$x = \frac{1100101}{y = 0011011}$$

Definition

So
$$d(x,y) = 6$$
.

 $x, y \in F_2^n$; Hamming distance between x and y is:

 $d(\mathbf{x}, \mathbf{y}) =$ the number of coordinates in which \mathbf{x} and \mathbf{y} differ

= the number of nonzero coordinates in $\mathbf{x} - \mathbf{y}$

= the number of coordinate changes needed to go from ${\bf x}$ to ${\bf y}$.

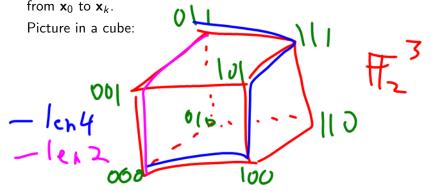
Hamming weight wt(x) is the number of nonzero coordinates of x, i.e.:

$$wt(\mathbf{x}) = d(\mathbf{x}, 0),$$
 $d(\mathbf{x}, \mathbf{y}) = wt(\mathbf{x} - \mathbf{y}).$

Why is Hamming distance a distance?

Definition

A **Hamming path of length** k in \mathbf{F}_2^n is a sequence $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbf{F}_2^n$ such that for $1 \leq i \leq k$, the vectors \mathbf{x}_{i-1} and \mathbf{x}_i differ in exactly one coordinate (i.e., $\mathbf{x}_i - \mathbf{x}_{i-1}$ has exactly one nonzero coordinate). We also say that the path $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_k$ goes



Hamming distance is a path distance

Theorem

For $\mathbf{x}, \mathbf{y} \in \mathbf{F}_2^n$, the Hamming distance $d(\mathbf{x}, \mathbf{y})$ is precisely the length of a shortest Hamming path from \mathbf{x} to \mathbf{y} .

Proof:

Can only change one coord in each step of a Hamming path, so the length of a Hamming path from x to y is at least d(x,y).

Conversely, by changing one coordinate at a time, we can get from x to y in a path of length d(x,y).

Consequence: Distances to any codeword \mathbf{x} are same as distances to $\mathbf{0}$, so if d is **minimum distance**

$$d = \min \left\{ \operatorname{wt}(\mathbf{x}) \mid \mathbf{x} \in \mathcal{C} \right\},$$

then d is smallest distance between any two codewords in C.

Hamming distance is a metric

Definition

A **metric** on a set X is a function $d: X \times X \to \mathbf{R}$ (i.e., two inputs in X, output is a real number) that satisfies the following four axioms for all $x, y, z \in X$:

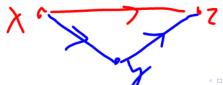
- 1. $d(x, y) \ge 0$.
- 2. d(x,y) = 0 if and only if x = y.
- 3. d(x, y) = d(y, x).
- 4. (Triangle inequality) $d(x, z) \le d(x, y) + d(y, z)$.

No shortcuts thru third location y.

Theorem

Hamming distance $d(\mathbf{x}, \mathbf{y})$ is a metric on \mathbf{F}_2^n .

Proof of triangle:



If the red path is shortest path from x to z, then d(x,y)+d(y,z) can't be d(x,z), otherwise there would be a shorter path.

(Lookup table algorithm)

Xavier transmits x, Yolanda receives y.

- If there is a unique $\mathbf{y}' \in \mathcal{C}$ such that $d(\mathbf{y}, \mathbf{y}')$ is minimized, we correct \mathbf{y} to \mathbf{y}' . (E.g., if $\mathbf{y} \in \mathcal{C}$, then $\mathbf{y}' = \mathbf{y}$ minimizes $d(\mathbf{y}, \mathbf{y}')$, as $d(\mathbf{y}, \mathbf{y}) = 0$.)
- ▶ If there is more than one vector $\mathbf{y}' \in \mathcal{C}$ such that $d(\mathbf{y}, \mathbf{y}')$ is minimized, we state that \mathbf{y} has been detected as an erroneous transmission, but cannot be corrected.

Theorem

Let $\mathcal C$ be a binary linear code with minimum distance d. Then the nearest neighbor method, applied to $\mathcal C$, corrects $\lfloor (d-1)/2 \rfloor$ errors and detects $\lfloor d/2 \rfloor$ errors.

Proof of correction: Assume d = 2k + 1, so k = (d - 1)/2.

At most k errors going from x to y

But shortest dist between two codewords is at most 2k+1. So nearest nbr x unique.

Ideals

Maybe the most important definition in ring theory:

Definition

Let R be a (commutative) ring. An **ideal** of R is $I \subseteq R$ s.t.:

- 1. (Zero) The zero element of R is contained in I.
- 2. (Closed under addition) If $x, y \in I$, then $x + y \in I$.
- 3. (Closed under *R*-multiplication) If $x \in I$ and $r \in R$, then $rx \in I$.

For a ring R:

- ▶ The set {0} is an ideal of R called the **zero ideal**.
- R is an ideal of itself.

More interesting examples

Let $R = \mathbf{Z}$, $I = \{3n \mid n \in \mathbf{Z}\}$.

Classes of examples

R a ring.

▶ For fixed $a \in R$, the set

$$(a) = \{ ra \mid r \in R \}$$

is called the **principal ideal generated by** a.

▶ For fixed $a, b \in R$, the set

$$(a,b) = \{ra + sb \mid r,s \in R\}$$

is called the **ideal generated by** a **and** b.

▶ For F a field and $a \in F$, the set

$$I_a = \{ f(x) \in F[x] \mid f(a) = 0 \}$$

is an ideal of F[x].