
Math 127, Wed Mar 10

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: 6.1–6.2.

I Reading for Wed: 6.3–6.4.

I PS05 outline due tonight, full version due Mon Mar 15.

I Problem session Fri Mar 12, 10am–noon.



Linear algebra: Questions to resolve

I Is it possible for a subspace W to have one basis with 5
vectors and another basis with 7 vectors? In other words, is it
possible for the dimension of W to be both 5 and 7?

I Is it possible for F 8 to contain a subspace of dimension 10? In
other words, is it possible for a smaller space to have a larger
dimension?

I Can we find a subspace of F n that doesn’t have a basis at all?



Thank goodness, it all works

Theorem (Comparison Theorem)

Let W be a subspace of F n. If {v1, . . . , vs} spans W and
{w1, . . . ,w`} is a linearly independent subset of W , then ` ≤ s.

I.e.: ANY linearly independent subset is no larger than ANY
spanning set.
Why: If s < `, then we can set up with s linear equations in `
variables, which must have a nonzero solution. That nonzero
solution contradicts linear independence of {w1, . . . ,w`}.



Consequences of Comparison Thm

Corollary (Dimension Theorem)

Any two bases for W must have the same size k (i.e., W cannot
have more than one dimension).

Proof:

Corollary

If dimW = k, any linearly independent set must have size ≤ k and
any span set must have size ≥ k .

Proof: PS05.



So how can we be sure that every subspace has a basis?

Definition
Let W be a subspace of F n. A maximal linearly independent
subset of W is a linearly independent subset {v1, . . . , vk} of W
such that for any x ∈W , {v1, . . . , vk , x} is linearly dependent.

Theorem
Let W be a subspace of F n, and suppose {v1, . . . , vk} is a
maxmimal linearly independent subset of W . Then {v1, . . . , vk} is
a basis for W .

(proof omitted)

Corollary

If W is a subspace of F n, then W has a basis.



One more consequence

Corollary (Subspace Size Theorem)

If W is a subspace of a subspace V of F n, then
dimW ≤ dimV ≤ n. In particular, any subspace of F n has
dimension at most n.





How to send an ’a’

Sending an ’a’ over a communications channel:

letter ’a’

(ASCII 097)

letter ’a’

(ASCII 097)01100001

transmit receive

01100001

But mistakes happen:

letter ’e’letter ’a’

(ASCII 097) 01100001

transmit error receive

01100101 (ASCII 101)

Motivating Problem

Is there some way that we can detect that an error or errors has
occurred? Better yet, is there some way that we can correct an
error or errors?



Parity check code

Suppose we have n data bits x1, . . . , xn to transmit. We can add a
parity check bit

x0 = x1 + · · ·+ xn (mod 2)

to our message, and transmit the (x0, x1, . . . , xn). Note:

x0 + x1 + · · ·+ xn = 0 (in F2)

Example:





Example: Repetition code

Can we do better and correct an error in transmission? Yes, with
the repetition code.
Suppose we want to transmit one data bit x ∈ F2. We repeat x
three times:

So if one error occurs in transmission:

we can fix it because other two bits still correct (majority logic).
I.e., we can correct one error at the cost of transmitting 3 times as
much data.
Q: Can we correct errors more cheaply?



Binary linear codes

Definition
We define a bit to be an element of F2, and we define a bitstring
of length n to be an element of Fn

2.

Definition
A code is a subset C of Fn

2. Elements (vectors) of a code are
called codewords.

I.e., codewords are the possible messages that could have been
transmitted without errors. The idea is that if you pick your code
well, it should be possible to tell if an error has occurred, and if
you pick it really well, it should be possible to correct the error.

Definition
A binary linear code C of length n is a subspace C of Fn

2.



Standard framework for discussing codes

Intended msg errors

m

encode decode

x

Transmit Receive
y

Read msg
m’

1. Xavier wants to send a bitstring m.

2. Xavier encodes the message m to some codeword x ∈ C.

3. Xavier transmits x, Yolanda receives y.
4. Yoland decodes y to the message m′, in steps:

I First, Yolanda corrects y to a valid codeword y′ ∈ C.
I Yolanda then reads y′ as a message m′.

Algebraic model for errors: Let ei be the vector in Fn
2 whose ith

coordinate is 1 and whose other coordinates are all 0. One error in
bit i means:

y = x + ei .

Two errors in bits i and j :

y = x + ei + ej .



How to define/describe a binary linear code

Two ways:

Definition
Let G be an n× k matrix over F2. To say that G is the generator
matrix of C of length n means that C = Col(G ).

Definition
Let H be a k × n matrix over F2. To say that H is the parity
check matrix of a binary linear code C of length n means that
C = Null(H).

I.e.: A generator matrix defines a code as a column space, and a
parity check matrix defines a code as a nullspace.



Back to our examples

Parity check code: The parity check code of length n + 1 is the
nullspace C of the 1× (n + 1) matrix H = [1 . . . 1]. In other
words, x ∈ Fn+1

2 is in C exactly when Hx = 0.
Encoding is x0 = x1 + · · ·+ xn, transmit (x0, x1, . . . , xn). If
received message y satisfies Hy = 0, read off bits x1, . . . , xn as
message; otherwise notify Xavier that there was an error.

Repetition code: The repetition code of length n is the span C of

the column of the generator matrix G =

1
...
1

.

Encoding the bit x means multiplying Gx , transmit Gx , correct
received bits by majority logic, then use any bit as the message bit.



Error-correcting codes in practice


