Math 127, Wed Feb 10

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 3.2–3.3.
- Reading for Wed: 3.4–3.5.
- PS02 outline due tonight, full version due Mon Feb 15.
- Next problem session Fri Feb 12, 10:00-noon on Zoom.
- Exam 1 in 12 days.

Recap: $\mathbf{Z}/(m)$, the integers mod m

Let *m* be a positive integer. We define the ring Z/(m), or the integers (mod *m*), as follows.

- The underlying set of $\mathbf{Z}/(m)$ is $\{0, \ldots, m-1\}$.
- For a, b ∈ Z/(m), we define a + b to be the ordinary integer sum of a and b, reduced mod m.
- Similarly, for a, b ∈ Z/(m), we define the product ab to be the ordinary integer product of a and b, reduced mod m.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

When we work in Z/(m), we refer to m as the **modulus** of our ring.

Example: Fractions in $\mathbf{Z}/(7)$

In $\textbf{Z}/(7)=\{0,1,2,3,4,5,6\},$ what is the reciprocal of each element?

(· [= [, so [~ =] cix (2.4=8=1 in 2/(7) So 21=4,41=2 3.5=15=14+1=1 6.6=36=35

So 6-1=6. (AIL: G=-1, G=-1)diff=) SbGIL'=-1Si always trae in Zim that $(m-1)^{-1}=(-1)^{-1}=-1=m-1$ 1=1,2=4,3=5,6=6 4=25=3 O has no inverse.

Experiment: Primitive elements

Defn: To say that $a \in \mathbf{Z}/(m)$ is **primitive** means that every nonzero element of Z/(m) is a power of $\not < f < m$ Is 2 primitive in Z/(5)? 2=8 2°=1, 2'-2, 2=4, 1, 2, 3, 4 / So 2 is primitive in Z/(5). ls 2 primitive in $\mathbf{Z}/(7)$? 2°=1,2'=2,2²=4,2²=8=1,2⁴=2³·2 $(,2,4,(,3,4,\ldots)$ 2 is not primitive in Z/(7). ls 2 primitive in $\mathbf{Z}/(11)$? n=11 2'=1,2'=2,2'=4,2'=8,24=16=5 2=5.2=10 ・ロト ・ 戸 ・ ・ ヨ ・ ・ ・ ・ ・ -

The point of the last few problems in PS02: Experiment!

Try a bunch of examples and see if you find any patterns!

(And yes, the other point is for you to get better at computation in $\mathbf{Z}/(m)$ through practice — but you might as well do something interesting in the process.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Solving ax = b in $\mathbf{Z}/(m)$

Question

For which $a, b \in \mathbb{Z}/(m)$ can we solve the equation ax = b in $\mathbb{Z}/(m)$ (i.e., for some $x \in \mathbb{Z}/(m)$)?

Turns out this is an old problem in disguise!

.

Bezout's identity and ax = b

Corollary

For $a, b \in \mathbb{Z}/(m)$, ax = b has a solution $x \in \mathbb{Z}/(m)$ exactly when gcd(a, m) divides b (in Z). Furthermore, Euclidean Rewriting gives an explicit algorithm for solving ax = b.

in $\mathbb{Z}/(76)$ Example: Solve $42 \times = 36$ <=> Sdre 42x+761=36 n Z. 6= 1 (42) + 34 2 divs 36. B = 1(34) + 1so there is 34=418) ・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

= m - q Signs never cancel, always reinforce; signs of m, a alternate a - (m - a) = 2a - m34 - 4(9)= (m - n) - 4(2n - m)5h-9a 6)-9(42)=380-378-21 (-1) (42)=2 42 (-9/18)-2(18)=36

 $-162 = 66 \pmod{76}$ +3(76) 42.66=36 (mod 76) (x=66) 0 in 7/00 Alt: 34=m-1 7+ 36=2m-10a Z=Sm-9a 7+ 36=2m-10a $5_0 42(-10) = 36 i r Z/(76)$ -(0 = 66) i r Z/(76)

Solving ax = b in $\mathbf{Z}/(p)$

To repeat:

Corollary

For $a, b \in \mathbb{Z}/(m)$, ax = b has a solution $x \in \mathbb{Z}/(m)$ exactly when gcd(a, m) divides b (in \mathbb{Z}).

So when the modulus is a prime *p*:

Corollary

If p is prime, and $a \neq 0$ in $\mathbb{Z}/(p)$ (i.e., a is not congruent to 0 (mod p)), then ax = 1 for some $x \in \mathbb{Z}/(p)$.

So every nonzero element of Z/(p) has a multiplicative inverse!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Units and fields

Definition

Let R be a ring. For $a \in R$, the **multiplicative inverse of** a is $b \in R$ such that ab = 1. We use a^{-1} to denote the inverse of a. To say that a is a **unit** in R means that a has a multiplicative inverse in R.

Definition

A **field** is a ring R in which every nonzero element is a unit (and $1 \neq 0$).

Fields you know include **R**, **Q**, and now:

Corollary The ring Z/(p) is a field. (p prime) Z((p)Because this makes Z/(p) special, we often refer to it as F_p , the field of order T_p field of order p.

Polynomials with coefficients in a ring R

Let *R* be a ring. (Think: *R* is one of **Z**, **Q**, **R**, **C**, **Z**/(*m*).) We define the ring *R*[*x*], the **ring of polynomials with coefficients in** *R*, as follows. Set: All expressions of the form $\sum_{i=1}^{n} a_i x^i = (a_i) x^n + (a_{n-1}) x^{n-1} + \dots + (a_2) x^2 + (a_1) x + (a_0), \quad (1)$

where each a_i is an element of the ring R.

Addition and multiplication: in R[x] are each defined to work like addition and multiplication of polynomials with real coefficients, except that all coefficient arithmetic is performed in the ring R.

An important and subtle point

Polynomials are not (just) functions — they are abstract objects that are elements of a ring. In fact, we will most often use polynomials as if they were numbers in some very strange system of numbers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The degree of a polynomial

It to de Let $f(x) = a_n x^{n-1} + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \neq 0$. The **degree** of f(x), or deg f(x), is defined to be the largest k such that $a_k \neq 0$. If deg f(x) = n, then a_n is called the **leading coefficient** of f(x), and $a_n x^n$ is called the **leading term** of f(x). To say that a polynomial f(x) is **monic** means that the leading coefficient of f(x) is 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We also define deg $0 = -\infty$.

A weird and unpleasant example

You may remember from high school algebra/precalc that

$$\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x)).$$

(2)

However, in $(\mathbf{Z}/(6))[x]$, we have:

Definition

To say that a ring R has the **zero factor property** (ZFP) means that if $a, b \in R$ and ab = 0, then either a = 0 or b = 0. Equivalently, having ZFP means that the product of two nonzero elements of R is still nonzero.

ZFP defines the problem away

Suppose *R* is a ring with ZFP (e.g., **Q**, **R**, **C**, **F**_p). Theorem For $f(x), g(x) \in R[x]$,

$$\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x)). \tag{3}$$

Corollary

If f(x), g(x), h(x) are polynomials in R[x] such that f(x) = g(x)h(x), then one of g(x) and h(x) must have degree at most $\frac{\deg(f(x))}{2}$.

Corollary

If u(x) is a unit in R[x], then u(x) must be a nonzero constant polynomial u = u(x); in fact, u must actually be a unit in R.