
Math 127, Wed Feb 03

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: 2.5–2.6.

I Reading for Mon: 3.1.

I PS01 outline due today, full version due Mon Feb 08.

I First real problem session Fri Feb 05, 10:00–noon on Zoom.





Correction from last time

Certainly not true that two random numbers a and b have gcd 1;
e.g., 50% chance that each of a and b is even, so 25% chance that
2 is a common divisor of a and b.
In fact, probability that gcd(a, b) = 1 is:

(not both even)(not both div by 3)(not both div by 5) · · ·

= (1− 1

4
)(1− 1

9
)(1− 1

25
) · · ·

=
6

π2
≈ 61%

But if you avoid common factors that you can see in the digits of a
and b, like 2, 3, and 5, probability goes up to around 95%.



The Euclidean Algorithm, written out in a table

r−1 = q1r0 + r1 (0 ≤ r1 < r0)

r0 = q2r1 + r2 (0 ≤ r2 < r1)

r1 = q3r2 + r3 (0 ≤ r3 < r2)

...

rN−4 = qN−2rN−3 + rN−2 (0 ≤ rN−2 < rN−3)

rN−3 = qN−1rN−2 + rN−1 (0 ≤ rN−1 < rN−2)

rN−2 = qN rN−1



Precise statement of results

Thm: It is a fact that:

1. The Euclidean Algorithm terminates after finitely many steps,
with some final nonzero remainder rN−1.

2. Any common divisor of a and b divides rN−1. (So rN−1 is at
least as big as any common divisor of a and b.)

3. The last nonzero remainder rN−1 divides both a and b. (So
rN−1 is, in fact, a common divisor of a and b, which means
that rN−1 is the greatest common divisor of a and b.)

Super-non-obvious consequence: Every common divisor of a
and b divides gcd(a, b).



Proof that every common divisor divides rN−1

Suppose d is a common divisor of a and b, i.e., d divides both a
and b.

r1 = r−1 − q1r0

r2 = r0 − q2r1

r3 = r1 − q3r2

...

rN−3 = rN−5 − qN−3rN−4

rN−2 = rN−4 − qN−2rN−3

rN−1 = rN−3 − qN−1rN−2



The Signed Euclidean Algorithm
Same as Euclidean Algorithm, except that you use the Signed
Division Theorem (i.e., you allow negative remainders so you can
make the remainders as small as possible.

Example: gcd(416, 127).



Another look at the Euclidean algorithm
An integer linear combination of a and b is an expression of the
form ra + sb, where r , s ∈ Z.

r1 = r−1 − q1r0

r2 = r0 − q2r1

r3 = r1 − q3r2

...

rN−3 = rN−5 − qN−3rN−4

rN−2 = rN−4 − qN−2rN−3

rN−1 = rN−3 − qN−1rN−2



Bezout’s identity
It follows that:

Theorem (Bezout’s Identity)

Let a and b be nonzero integers. The equation

ax + by = gcd(a, b)

has a solution x , y ∈ Z.

The algorithm used to solve the above equation is called
Euclidean Rewriting, since the point is that we can rewrite all of
the remainders ri as integer linear combinations of a and b.
We also note, for later:

Corollary

Let a and b be nonzero integers. For c ∈ Z, the equation

ax + by = c

has a solution x , y ∈ Z if and only if gcd(a, b) divides c.



An example of Bezout
Solve 416x + 124y = gcd(416, 124):

416 = 3(124) + 44

124 = 2(44) + 36

44 = 1(36) + 8

36 = 4(8) + 4





A crash course in complexity

Definition
The complexity of an algorithm is the (estimated) time or space
that an algorithm needs to finish, given an input of size n. Often,
this description comes in the form of a worst-case time estimate
T (n), that is, a function T (n) such that, given an input of size n,
the algorithm is guaranteed to finish within T (n) steps (though
possibly sooner).

We use big-O notation to give a rough idea of T (n):

Definition
Let T (n) and f (n) be real-valued functions with domain the
natural numbers N (in fancy function notation, T : N→ R and
f : N→ R). To say that T (n) = O(f (n)) means that there exists
some constant C such that T (n) ≤ Cf (n) for all n ∈ N. The
notation O(f (n)) is known as big O notation.



Examples of complexities we’ve already seen

I Naive algorithm for gcd(a, b) has worst-case time estimate
T (n) = 2n, or in big-O notation, O(n).

I Improved naive algorithm on PS01: T (n) = O(
√
n).

Recall from calculus/precalc:

log(n) <<
√
n << n

Meaning lim
n→∞

√
n

n
= 0 and lim

n→∞

log n√
n

= 0. So O(
√
n) is way

faster than O(n), but O(log n) leaves both of those in the dust.



The Euclidean Algorithm is exponentially faster

Theorem
Let a, b, and n be nonzero integers with |a| ≥ |b| and |b| ≤ n.
Using the Signed Euclidean Algorithm to compute gcd(a, b)
finishes in O(log n) time, or more precisely, requires O(log n)
division-with-remainder steps to finish.

Idea of proof: Look back at the Signed Euclidean Algorithm.



Another example of a complexity estimate

The traditional Christmas carol “The 12 Days of Christmas” has
the following structure: On day 1, the singer gets one gift of type
1 (a partridge in a pear tree) from their true love; on day 2, the
singer gets two gifts of type 2 and one gift of type 1 (two
turtledoves and a partridge in a pear tree); and so on. Suppose
this song can be extended to any arbitrary number of days.

I Give a big-O estimate of the number of gifts the singer
receives on day n.

I Give a big-O estimate of the total number of gifts the singer
receives over the entire song, going from day 1 through day n.




