Welcome to Math 127

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 1.1–1.2, 2.1–2.2.
- Reading for Mon: 2.3–2.4.
- PS00 due Mon Feb 01.
- PS01 outline due Wed Feb 03, full version due Mon Feb 08.
- Problem session Fri Jan 29, 10:00–noon on Zoom.

Tour of the course website

The course website is:

http://www.timhsu.net/courses/127/

Breakout room activity 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In a minute, I'll send everyone into breakout rooms in groups of 3–4 to answer the following question:

What is a notable fact about yourself?

(If nothing comes to mind, make something up!)

In each breakout room:

- Share your notable facts with each other.
- Learn each others' names.

Get ready to turn on your cameras and mics. (I'll pause the recording.)

Breakout room activity 2

Next, in breakout rooms, you'll answer the following question:

What is one important event in your mathematical life?

In each breakout room:

- Learn someone else's name and important event. (I'll visit each room to help you organize cyclically.)
- Be ready to share that person's important event when we get back to the main room. (Take notes!)

Get ready to turn on your cameras and mics again.

Why is this course different from other courses?

- The goal of this course is to train you to use algebra to make money.
- Theory (or rather, understanding theory) is what makes money.
- So much more than before, you need to focus on language and definitions.
- For a good understanding of algebra, knowing certain examples like the back of your hand becomes very important. (In this class: The integers mod m.)
- So you'll need to read the text differently than you've read other texts. Read it like a story that you want to understand and take to heart. And interact with it like you're a superfan.
- And when you do problems, instead of just looking for procedures to follow or imitate, you'll often need to understand the **big idea** of a particular topic and apply it.

Problems vs. exercises

From Paul Zeitz:

An exercise is a question that tests the student's mastery of a narrowly focused technique, usually one that was recently "covered." Exercises may be hard or easy, but they are never puzzling, for it is always immediately clear how to proceed.... A problem is a question that cannot be answered immediately. Problems are often open-ended, paradoxical, and sometimes unsolvable, and require investigation before one can come close to a solution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

This course has its share of exercises, but the best parts are **problems**.

What are the divisors of 12?

So that was actually a trick question

The meaning of **divisor** depends on the numbers we're allowed to use:

Not quite a defn: Suppose R is some system of numbers like Z, Q, R, or C. To say that we are working in the ring R means that we are allowed to use numbers in R, and only numbers in R, in our computations, explanations, and so on.

So now:

Definition

To say that an integer d divides an integer n in \mathbf{Z} , or alternately, that d is a divisor of n, means that n = qd for some $q \in \mathbf{Z}$ (i.e., some integer q).

So what are the divisors of 12, really?

They are: 1,2,3,4,6,12 -1, 2, -3, -4, -6, -12

Definition (in the integers) To say that integers *a* and *b* are **associates** means that $a = \pm b$; equivalently, we say that *a* and *b* are the same **up to associates**. So the divisors of 12 are, up to associates:

土」, 土3, 土4, 土6, 土12

Common divisors and greatest common divisor

Definition

For integers d, a, and b, to say that d is a **common divisor** of a and b means that d divides a and d divides b.

Definition

For integers a and b, at least one of which is not 0, the **greatest common divisor**, or **GCD**, of a and b is exactly what it sounds like: the greatest integer d that is a common divisor of a and b. We denote the greatest common divisor of a and b by the symbol gcd(a, b).

🥿 What do we mean by greatest?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

An example

Example: What is gcd(8, 12)? How do you know?

Well, actually: If we use "greatest" to mean biggest in terms of absolute value, then gcd is determined exactly up to associates. So we can say:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Motivating problem for Ch. 2

Motivating Problem

Given nonzero integers a and b, how can we efficiently compute gcd(a, b)?

Here's a **naive** algorithm for finding gcd(a, b). (Naive doesn't necessarily mean bad!) Let *a* and *b* be positive integers.

- 1. Make an ordered list of positive divisors of *a*.
- 2. Check which of those divisors of *a* also divides *b*, starting from the largest divisor and going downwards.
- The first common divisor found in step 2 will be gcd(a, b).

How fast or slow is the naive algorithm?

Suppose $a, b \le n$. (I.e., we fix a maximum size n of integers that we'll consider.)

- 1. One way to find all positive divisors of *a* is to consider all *d* from 1 to *a* and divide *a* by *d* with remainder. This could take up to *n* divisions.
- 2. Then for each *d* in the list of divisors of *a*, we divide *b* by *d* and see if there's a remainder. There are no more than *n* divisors of *a*, so again we have no more than *n* divisions.

So worst-case scenario is 2n steps.

Can we beat that speed by an exponential factor?

Motivating Problem

Suppose *a*, *b* are positive integers $\leq n$. Can we find an algorithm for computing gcd(*a*, *b*) that is guaranteed to take fewer than $C \log n$ steps, for some constant *C*?