## **SA25** Math 112, Spring 2006

- 1. (8.4) 4(b).
- 2. (8.4) 8.
- 3. If the vector field  $\mathbf{E}(x,y,z)$  is the electric field induced by a collection of stationary charges, in dynes per electrostatic unit, and  $\delta(x, y, z)$  is the density of charge at the point (x, y, z), in electrostatic units per cm<sup>3</sup>, then the differential form of Gauss' Law (in CGS units) states that

$$\operatorname{div} \mathbf{E}(x, y, z) = 4\pi \delta(x, y, z),$$

and the integral form of Gauss' Law (in CGS units) states that if a closed surface Sencloses a total charge q, then

$$\iint\limits_{S} \mathbf{E} \cdot d\mathbf{S} = 4\pi q.$$

Explain why the differential form of Gauss' Law implies the integral form of Gauss' Law.

4. Below are sketches of four vector fields  $\mathbf{F}_i$  ( $1 \le i \le 4$ ). For three of those vector fields,  $\operatorname{div} \mathbf{F}_i = 0$  everywhere, and for two of those vector fields,  $\operatorname{curl} \mathbf{F}_i = \mathbf{0}$  everywhere. Use Stokes' Theorem and the Divergence Theorem to identify which vector fields seem most likely to be curl-free and divergence-free, and briefly justify your answer.



 $\mathbf{F}_1$ 



 $\mathbf{F}_2$ 



 $\mathbf{F}_3$ 

