SA15 Math 112, Spring 2006

- 1. (6.1) 6.
- 2. Let $U = \{(r, \theta) \mid r \geq 0\}$, and let $f: U \to \mathbb{R}^2$ be the polar coordinates map:

$$f(r, \theta) = (r \cos \theta, r \sin \theta).$$

- (a) What is the image under f of the line r=4 in the (r,θ) -plane? Is f one-to-one when restricted to this line? Draw the line in the (r,θ) -plane and its image in the (x,y)-plane.
- (b) Let D be the box in the (r, θ) -plane given by $0 \le \theta \le \frac{\pi}{2}$, $0 \le r \le 3$. Is f one-to-one when restricted to f? Draw f in the f0-plane and its image in the f1-plane.
- (c) Let E be the disc of radius 1, and center $r=2, \theta=0$. In other words, let

$$E = \{(r, \theta) \mid (r - 2)^2 + \theta^2 \le 1\}.$$

Draw E in the (r, θ) -plane and its image in the (x, y)-plane.

3. Let $g: \mathbb{R}^3 \to \mathbb{R}^3$ be the spherical coordinates map:

$$g(\rho, \theta, \varphi) = (\rho \cos \theta \sin \varphi, \rho \sin \theta \sin \varphi, \rho \cos \varphi).$$

Let E_1 be the box given by $1 \le \rho \le 2$, $0 \le \theta \le \frac{\pi}{6}$, $\frac{\pi}{6} \le \varphi \le \frac{\pi}{3}$, and let E_2 be the box given by $3 \le \rho \le 4$, $0 \le \theta \le \frac{\pi}{6}$, $\frac{\pi}{6} \le \varphi \le \frac{\pi}{3}$. Draw E_1 and E_2 in (ρ, θ, φ) -space and draw their images in (x, y, z)-space. Which image is bigger?