Paragraph HW 08 Divergence and surface integrals Math 112, Spring 2006 Consider the following vector fields: $$\mathbf{F}_1 = z\mathbf{k},$$ $$\mathbf{F}_2 = x\mathbf{j} + y\mathbf{k},$$ $$\mathbf{F}_3 = \frac{x}{(x^2 + y^2 + z^2)^{3/2}}\mathbf{i} + \frac{y}{(x^2 + y^2 + z^2)^{3/2}}\mathbf{j} + \frac{z}{(x^2 + y^2 + z^2)^{3/2}}\mathbf{k}.$$ Let S_1 be the unit sphere centered at the origin, oriented by the outward normal, and let S_2 be the sphere of radius 5 centered at the origin, oriented by the outward normal. - 1. For each \mathbf{F}_i , i = 1, 2, 3, do each of the following: - (a) Calculate div \mathbf{F}_i . (b) Calculate $$\iint_{S_i} \mathbf{F}_i \cdot d\mathbf{S}$$. (c) Calculate $$\iint_{S_2} \mathbf{F}_i \cdot d\mathbf{S}$$. - 2. Suppose we have a vector field \mathbf{F} such that, at every point in \mathbb{R}^3 except possibly (0,0,0), div $\mathbf{F}=0$. - (a) Does it always seem to be the case that $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S} = 0$? Explain your answer, using appropriate examples from the previous problem. - (b) Does it always seem to be the case that $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_2} \mathbf{F} \cdot d\mathbf{S}$? Explain your answer, using appropriate examples from the previous problem.