Paragraph HW 08 Divergence and surface integrals Math 112, Spring 2006

Consider the following vector fields:

$$\mathbf{F}_1 = z\mathbf{k},$$

$$\mathbf{F}_2 = x\mathbf{j} + y\mathbf{k},$$

$$\mathbf{F}_3 = \frac{x}{(x^2 + y^2 + z^2)^{3/2}}\mathbf{i} + \frac{y}{(x^2 + y^2 + z^2)^{3/2}}\mathbf{j} + \frac{z}{(x^2 + y^2 + z^2)^{3/2}}\mathbf{k}.$$

Let S_1 be the unit sphere centered at the origin, oriented by the outward normal, and let S_2 be the sphere of radius 5 centered at the origin, oriented by the outward normal.

- 1. For each \mathbf{F}_i , i = 1, 2, 3, do each of the following:
 - (a) Calculate div \mathbf{F}_i .

(b) Calculate
$$\iint_{S_i} \mathbf{F}_i \cdot d\mathbf{S}$$
.

(c) Calculate
$$\iint_{S_2} \mathbf{F}_i \cdot d\mathbf{S}$$
.

- 2. Suppose we have a vector field \mathbf{F} such that, at every point in \mathbb{R}^3 except possibly (0,0,0), div $\mathbf{F}=0$.
 - (a) Does it always seem to be the case that $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S} = 0$? Explain your answer, using appropriate examples from the previous problem.
 - (b) Does it always seem to be the case that $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_2} \mathbf{F} \cdot d\mathbf{S}$? Explain your answer, using appropriate examples from the previous problem.