
Math 108
Irrational, transcendental, indescribable

We have already seen that, since there are countably many rational numbers and un-
countably many real numbers:

Corollary. There are uncountably many irrational numbers.

In other words, there are infinitely more irrational numbers than rational numbers. Put
still another way, in a sense that can be made precise in real analysis, almost all real numbers
are irrational.

The purpose of this handout is to explain that while the above corollary is somewhat
mind-blowing, the real numbers are even more bizarre than the above results might indicate.
To explain how and why, we begin by recalling the following theorem.

Theorem. If An is a countable set for each n ∈ Z+, then
⋃

n∈Z+

An is countable.

Definition. We say that a real number is algebraic if it is a root of some polynomial p(x)
with rational coefficients. A real number that is not algebraic is said to be transcendental .

For example, any rational number a is algebraic, because a is a root of the rational
polynomial x − a;

√
2 is algebraic because it is a root of x2 − 2; and so on. It can also be

shown (though this is far from obvious) that sums, differences, products, and quotients of
nonzero algebraic numbers are also algebraic. On the other hand, while e, π, and similar
numbers have been known to be transcendental for over a century, as of right now (2016), for
most specific real numbers r, it seems to be very difficult to prove that r is transcendental.

Nevertheless, we have the following theorem.

Theorem. There are countably many algebraic numbers. Consequently, there are uncount-
ably many transcendental numbers, i.e., most real numbers are transcendental.

Proof. Let Pk be the set of all rational polynomials of degree k. We first observe that a
rational polynomial akx

k + · · · + a0 is defined uniquely by its k + 1 coefficients ak, . . . , a0
(ak 6= 0). It follows that Pk is equivalent to the Cartesian product (Q\ {0})×Q× · · · ×Q,
where there are k copies of Q (details of the bijection left as an exercise). Therefore, since
a finite Cartesian product of countable sets is countable, Pk is countable.

Next, for each k ∈ Z+, since Pk is countable, let Pk = {pk,i(x) | i ∈ Z+}, let Rk,i be the

set of all roots of the polynomial pk,i(x), and let Rk =
⋃

i∈Z+

Rk,i be the set of all roots of any

polynomial of degree k. Since any polynomial of degree k has at most k roots, each Rk,i is
finite, which means that Rk is a countable union of countable sets, and therefore countable.

Finally, since the set of algebraic numbers A is precisely the union of the roots of some

rational polynomial of some degree, we see that A =
⋃

k∈Z+

Rk. Therefore, A is a countable

union of countable sets, which means that A is countable.

So now, consider the following definitions, throughout which we fix a finite alphabet A.
This is a very mild restriction; for example, we can take A to be the union of all characters
used in any language on Earth, human, computer, or otherwise. (In fact, we can even take
A to be countable, and the following results still hold.)



Definition. We define the descriptions of length k to be Ak = A×· · ·×A, where there are

k copies of A, and we define the set of all descriptions D to be D =
⋃

k∈Z+

Ak. We define an

interpretation I of D to be a function I : D → R.

In other words, the descriptions of length k are the strings of length k in the alphabet
A, and an interpretation of those strings assigns a real number to each possible description.
Of course, this is on the optimistic side of things; in reality, most descriptions (such as
the random typing “lksdhjfdslh” or the text of Hamlet in Hebrew) will not specify any
particular real number. If this makes you uneasy, assign some arbitrary real number, like
0, to any non-numeric or nonsensical description.

Definition. Given a fixed interpretation I, we define the set of describable numbers to be
the range of I (a subset of R). Any number that is not describable is said to be indescribable.

For example, taking A to be the “universal alphabet” described above, and taking I to
be the usual interpretation of strings in that alphabet, any rational number is describable
as “p/q”, any algebraic number is describable (e.g., “the root of x5+16x−3 such that. . . ”),
any number given by any finite formula is describable (e.g., e =

∑∞
n=0(1/n!)), any number

that is the output of any finite computer program is describable, and so on.
Nevertheless, we still have the following theorem.

Theorem. For a fixed alphabet A and an interpretation I, there are only countably many
describable numbers. Consequently, there are uncountably many indescribable numbers, i.e.,
most real numbers are indescribable.

Proof. Since our fixed language A is countable, the finite Cartesian product Ak is countable,

and the countable union of countable sets D =
⋃

k∈Z+

Ak is countable. Therefore, the range

of I, which is

I(D) = {I(d) | d ∈ D} =
⋃
d∈D
{I(d)} ,

is a countable union of countable sets. It follows that the set of describable numbers, which
is the range of I, is countable.

In other words, we have shown that no matter what we do, no matter how clever we are,
and no matter how hard we try, given any real number r, we will almost certainly not be
able to describe r individually. Who would have guessed that the number line, something
you probably first saw back in grade school, is so fundamentally unknowable!


