Sample Exam 2 Math 108, Spring 2016

1. (12 points) Let $f: X \to Y$ be a function. State what the Inverse Theorem tells you about f.

2. (14 points) Define a relation \sim on \mathbf{R}^2 by declaring that

 $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1^2 + y_1^2 = x_2^2 + y_2^2$.

You are given that \sim is an equivalence relation (i.e., do not spend time trying to prove that).

- (a) Give a geometric description of $E_{(3,4)}$, the equivalence class of (3,4) under \sim .
- (b) Give a geometric description/picture of a typical equivalence class under \sim , and describe any special cases (non-typical equivalence classes).

In questions 3–4, you are given a statement. If the statement is true, you need only write "True", though a justification may earn you partial credit if the correct answer is "False". If the statement is false, write "False", and justify your answer **as specifically as possible**. (Do not just write "T" or "F", as you may not receive any credit; write out the entire word "True" or "False".)

- **3.** (12 points) If S is a nonempty subset of **R**, and u is an upper bound for S, then $u \in S$.
- **4.** (12 points) The relation $f : \mathbf{Z} \to \mathbf{Z}$ given by:

$$f(x) = y$$
 if and only if $y^2 = x$

is a well-defined function.

5. (16 points) **PROOF QUESTION.** Define a relation \sim on \mathbb{R}^2 by declaring that

 $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_2 - x_1 \in \mathbf{Z}$.

Prove that \sim is an equivalence relation.

6. (16 points) **PROOF QUESTION.** Let

$$X = \{ x \in \mathbf{R} \mid x \ge 0 \},\$$

$$Y = \{ y \in \mathbf{R} \mid y \ge 3 \}.$$

Define a function $g: X \to Y$ by $g(x) = x^2 + 3$. (You may assume that g is well-defined.) Prove that g is a bijection.

7. (18 points) **PROOF QUESTION.** Let

$$S = \left\{ \left. \frac{7n-5}{2n} \right| n \in \mathbf{Z}, \ n > 0 \right\}.$$

Prove that $\sup S = \frac{7}{2}$.