Math 108, problem set 06 Outline due: Wed Mar 16 Completed version due: Mon Mar 21 Last revision due: Wed Apr 27

Definitions: Let $f : X \to Y$ be a function, let A be a subset of X, and let B be a subset of Y.

- **restriction** We define the *restriction of* f *to* A to be the function $f|_A : A \to Y$ defined by $f|_A(x) = f(x)$ for all $x \in A$.
- **co-restriction** If it happens to be the case that for all $x \in X$, we have $f(x) \in B$, we define the *co-restriction of* f to B to be the function $f|^B : X \to B$ given by $f|^B(x) = f(x)$ for all $x \in X$.
- **bi-restriction** If it happens to be the case that for all $x \in A$, we have $f(x) \in B$, we define the *bi-restriction of* f to A, B to be the function $f|_A^B : A \to B$ given by $f|_A^B(x) = f(x)$ for all $x \in A$.

Exercises (to be done but not turned in): 14.1, 14.2, 14.3, 14.4, 14.6, 14.9, 15.4, 15.5, 15.8, 15.9.

Problems to be turned in: All numbers refer to problems in the Yellow and Blue Book. You will also need to use the definition of *composite function* from chapter 16 (p. 167).

- 1. Define a function $g : \mathbf{Z} \to \mathbf{Z} \times \mathbf{Z}$ by the formula g(x + y) = (x, y) for all $x, y \in \mathbf{Z}$. Is g well-defined? Prove your answer.
- 2. Complete (in as interesting a manner as possible) and prove the following theorem: Let A, B, and Y be sets, and let $f : A \to Y$ and $g : B \to Y$ be well-defined functions. Then the formula

$$h(x) = \begin{cases} f(x) & \text{if } x \in A, \\ g(x) & \text{if } x \in B, \end{cases}$$

gives a well-defined function $h: (A \cup B) \to Y$ if and only if (condition on f and g).

- 3. Let f and g be functions from \mathbf{R} to \mathbf{R} .
 - (a) If f(x) = g(x) for infinitely many $x \in \mathbf{R}$, is it necessarily the case that f = g? Prove or give a counterexample.
 - (b) If f(x) = g(x) for all but finitely many $x \in \mathbf{R}$, is it necessarily the case that f = g? Prove or give a counterexample.
- 4. 14.16.

(Cont. on next page.)

- 5. (a) 15.19(a).
 - (b) For any function $f: X \to Y$ and any $A \subseteq X$, define

 $f(A) = \{ y \in Y \mid y = f(a) \text{ for some } a \in A \}.$

Prove the **Embedding Lemma:** If $f : X \to Y$ is one-to-one and $A \subseteq X$, then the function $g : A \to f(A)$ given by g(a) = f(a) for all $a \in A$ is a bijection.

- 6. 15.23.
- 7. (a) 15.26(a).
 - (b) 15.26(c). (You may assume the results of 15.26(b) here.)