Math 108, problem set 05 Outline due: Wed Mar 09 Completed version due: Mon Mar 14 Last revision due: Wed Apr 27

Exercises (to be done but not turned in): 12.1, 12.4, 12.5, 12.6, 12.8, 12.9. Problems to be turned in: All numbers refer to problems in the Yellow and Blue Book.

- 1. Let S be a nonempty subset of \mathbf{R} , and let U be an upper bound for S. Prove that the following are equivalent:
 - (Sup) $U = \sup S$.
 - (Arbitrarily close) For any $\epsilon > 0$, there exists some $x \in S$ such that $U \epsilon < x$.

Suggestion: Instead of proving that (Arbitrarily close) implies (Sup), you may find it easier to prove the contrapositive.

- 2. Let S be the open interval (-7, -2). Determine (guess) the value of sup S, and prove that your guess is correct.
- 3. Let $S = \left\{ \frac{7n}{5n-2} \middle| n \in \mathbb{Z}, n > 0 \right\}$. Determine (guess) the value of $\inf S$, and prove that your guess is correct.
- 4. Let $S = (2, \pi^2) \cap \mathbf{Q}$. Determine (guess) the value of $\sup S$, and prove that your guess is correct.
- $5.\ 12.8.$
- 6. 12.13(a,b,c). (I.e., skip part (d).)
- 7. (a) Is it possible that there exists a real number M such that $r \leq M$ for all **rational** numbers r? Prove or disprove.
 - (b) Is it possible that there exists a real number m > 0 such that $r \ge m$ for all **postive rational** numbers r? Prove or disprove.