Math 108, problem set 04 Outline due: Wed Mar 02 Completed version due: Mon Mar 07 Last revision due: Mon Mar 21

Definitions:

block If $\{A_{\alpha} \mid \alpha \in I\}$ is a partition of a set X, we call the A_{α} the **blocks** of the partition.

Exercises (to be done but not turned in): 10.1, 10.2, 10.4, 10.5, 10.7, 11.2, 11.6.

Problems to be turned in: All numbers refer to problems in the Yellow and Blue Book.

- 1. 10.4.
- $2.\ 10.5.$
- 3. Define a relation ~ on \mathbf{R}^2 by saying that $(x_1, x_2) \sim (y_1, y_2)$ if and only if at least one of $x_1 y_1$ and $x_2 y_2$ is an integer. Determine whether or not this relation is reflexive, symmetric, or transitive. If a property holds, prove that it holds; if it does not, prove that it does not. If the relation is an equivalence relation, give the equivalence class of a general point.
- 4. 10.10.
- 5. Consider the relation ~ on \mathbf{R}^2 defined by declaring that $(x, y) \sim (w, z)$ if and only if 2x + y = 2w + z.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Give a geometric description/picture of a typical equivalence class under ~. Also, describe special cases (non-typical equivalence classes), if any.
- 6. For $n \in \mathbb{Z}$, let $A_n = \{2n, 2n+1\}$.
 - (a) Draw a picture of A_{-3}, \ldots, A_4 on the real number line, and label each A_n .
 - (b) Use the definition of partition to prove that $\mathcal{A} = \{A_n \mid n \in \mathbb{Z}\}$ is a partition of the set \mathbb{Z} . (You may use "K-12" facts that you know about even and odd numbers, division with remainder, etc.)
- 7. Let

$$L_b = \{(x, y) \in \mathbf{R}^2 \mid y = x^2 + b\}.$$

You are given that $\mathcal{A} = \{L_b \mid b \in \mathbf{R}\}$ is a partition of \mathbf{R}^2 (i.e., do not spend time checking that \mathcal{A} really is a partition).

- (a) Define an equivalence relation ~ whose equivalence classes are the blocks of A.
 (Do not spend time checking that ~ really is an equivalence relation.)
- (b) Prove that the equivalence classes under \sim are precisely the blocks of \mathcal{A} . More precisely:
 - i. Prove that for each $b \in \mathbf{R}$, there exists $(c, d) \in \mathbf{R}^2$ such that $E_{(c,d)} = L_b$; and
 - ii. Prove that for each $(c,d) \in \mathbf{R}^2$, there exists $b \in \mathbf{R}$ such that $L_b = E_{(c,d)}$.