Math 108, problem set 01b Due: Mon Feb 08 Last revision due: Mon Feb 22

Problems to be turned in:

The goal of this problem set is to outline the proof of the following theorem.

Theorem 1. Let *n* be a positive integer. If v_1, v_2, v_3, v_4, v_5 are contained in \mathbb{R}^n , then

 $\operatorname{span} \{v_1, v_2, v_3\} \subseteq \operatorname{span} \{v_1, v_2, v_3, v_4, v_5\}.$

Here are all of the definitions you need to make sense of the statement of this theorem.

Definition. For a positive integer n, $\mathbf{R}^n = \{(x_1, \ldots, x_n) \mid x_i \in \mathbf{R} \text{ for } 1 \le i \le n\}.$

Definition. For $c \in \mathbf{R}$, $(x_1, \ldots, x_n) \in \mathbf{R}^n$, and $(y_1, \ldots, y_n) \in \mathbf{R}^n$, we define

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n),$$

 $c(x_1, \dots, x_n) = (cx_1, \dots, cx_n).$

Definition. For a positive integer k, and $v_1, \ldots, v_k \in \mathbf{R}^n$, we define the span of v_1, \ldots, v_k to be

$$\operatorname{span} \{v_1, \dots, v_k\} = \{c_1v_1 + \dots + c_kv_k \mid c_i \in \mathbf{R}\}$$

- 1. Name one particular element v of \mathbf{R}^6 , and explain why the definition of \mathbf{R}^n tells you that v is an element of \mathbf{R}^6 .
- 2. Let v_1, v_2 , and v_3 be vectors in \mathbb{R}^n for some positive integer n. Name one particular element w of span $\{v_1, v_2, v_3\}$, expressed in terms of v_1, v_2 , and v_3 , such that $w \neq v_1$, $w \neq v_2$, and $w \neq v_3$. Explain why the definition of span tells you that w is an element of span $\{v_1, v_2, v_3\}$.
- 3. The inclusion "span $\{v_1, v_2, v_3\} \subseteq \text{span} \{v_1, v_2, v_3, v_4, v_5\}$ " is part of the statement of Theorem 1. Express this inclusion as an equivalent if-then statement.
- 4. Write out assumptions and conclusions for Theorem 1, putting as much as is logically possible into the assumptions. (See Section 8 of the proof notes on nested if-then statements.) Then use the definition of the span of a subset of \mathbf{R}^n to rewrite those assumptions and conclusions. The result should essentially be one or two lines away from a complete proof.