Math 108 Summary of cardinality

Numbers in parentheses refer to the Yellow and Blue Book.

Definition. Two sets A and B are said to be *equivalent* if there exists a bijection $f : A \to B$. We write $A \approx B$ in that case, and we also say that A and B have the same *cardinality*.

Theorem (Thm. 21.1). Equivalence is an equivalence relation.

Lemma (Embedding Lemma). Let X and Y be sets. If $f : X \to Y$ is one-to-one and $A \subseteq X$, then the function $g : A \to f(A)$ given by g(a) = f(a) for all $a \in A$ is a bijection, and therefore, $A \approx f(A)$.

Definition. A set A is said to be *finite* if either $A = \emptyset$ or $A \approx \{1, ..., n\}$ for some $n \in \mathbb{Z}^+$; otherwise, A is *infinite*.

Theorem (Cor. 21.10). If S is a finite set, and $A \subseteq S$, then A is finite.

Theorem (Thm. 21.11). If A and B are finite sets, then $A \cup B$ is finite.

Theorem (Cor. 21.14). If A and B are finite sets, then $A \times B$ is finite.

Theorem (Thm. 22.2, a.k.a. the Pigeonhole Principle). If $m, n \in \mathbb{Z}^+$, m > n, and $f : \{1, \ldots, m\} \rightarrow \{1, \ldots, n\}$ is a function, then f is not one-to-one.

Corollary (Thm. 22.3). The set N is infinite.

Definition. If $A \approx \{1, \ldots, n\}$ for $n \in \mathbb{Z}^+$, we say that |A| = n. (This is well-defined only because of the Pigeonhole Principle.)

Definition. A set A is said to be *countably infinite* if $A \approx \mathbf{N}$. A set A is said to be *countable* if A is either finite or countably infinite; otherwise, A is *uncountable*.

Lemma (Ex. 23.5/The Countability Lemma). Let A be a nonempty set. Then A is countable if and only if there exists an injective function $f : A \to \mathbf{N}$.

Theorem (Cor. 23.4). If S is a countable set, and $A \subseteq S$, then A is countable.

Theorem (Thm. 23.6). If A and B are countable sets, then $A \cup B$ is countable.

Theorem (Cor. 23.10). If A and B are countable sets, then $A \times B$ is countable.

Theorem (Thm. 23.13). If A_n is a countable set for each $n \in \mathbb{Z}^+$, then $\bigcup_{n \in \mathbb{Z}^+} A_n$ is a countable set

countable set.

Theorem (Thm. 23.11). The set of rational numbers, \mathbf{Q} , is countably infinite.

Theorem (Thm. 23.12). The set of real numbers, \mathbf{R} , is uncountable.

Proof: Cantor diagonalization.