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Krylov Subspaces



Basic Linear Algebra

Take H ∈ CN×N and r ∈ CN . The matrix-vector product

Hr ∈ CN

is a vector.
Example in R3: 1 2 3

4 5 6
2 7 3


︸ ︷︷ ︸

H

1
1
1


︸︷︷︸

r

=

 6
15
12


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Basic Linear Algebra

Take H ∈ CN×N and block R ∈ CN×p. The product

HR ∈ CN×p

is an N × p block.
Example in R3: 1 2 3

4 5 6
2 7 3


︸ ︷︷ ︸

H

1 3
1 2
1 1


︸ ︷︷ ︸

R

=

 6 10
15 28
12 23


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Krylov Sequence

Successive applications of operator H to a start vector r

r,Hr,HHr,HHHr, . . .

result in the Krylov sequence

r,Hr,H2r,H3r, . . .
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Krylov Sequence

Example:1 2 3
4 5 6
2 7 3


︸ ︷︷ ︸

H

1
1
1


︸︷︷︸

r

=

 6
15
12



H2r =

1 2 3
4 5 6
2 7 3

 6
15
12

 =

 72
171
153


H3r =

1 2 3
4 5 6
2 7 3

 72
171
153

 =

 873
2061
1800


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Krylov Sequence

The Krylov sequence induced by H and r is1
1
1


︸︷︷︸

r

,

 6
15
12


︸ ︷︷ ︸

Hr

,

 72
171
153


︸ ︷︷ ︸

H2r

,

 873
2061
1800


︸ ︷︷ ︸

H3r

,

10395
24597
21573


︸ ︷︷ ︸

H4r

, . . . ∈ R3
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Krylov Subspace
Example

The 3rd Krylov subspace induced by H and r:

K3(H, r) = span
{

r,Hr,H2r
}

All of the following are in K3(H, r)
r

H2r + 2Hr

r + 3Hr + 5H2r

In fact,

c0r + c1Hr + c2H2r for any c0, c1, c2 ∈ C
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Krylov Subspace

For H ∈ CN×N and r ∈ CN ,
Biggest possible Krylov subspace is N-th

KN(H, r) = span
{

r,Hr,H2r, . . . ,HN−1r
}
⊆ CN

Example: Recall in R3

H =

1 2 3
4 5 6
2 7 3

 , r =

1
1
1


Krylov sequence is1

1
1


︸︷︷︸

r

,

 6
15
12


︸ ︷︷ ︸

Hr

,

 72
171
153


︸ ︷︷ ︸

H2r

,

 873
2061
1800


︸ ︷︷ ︸

H3r

, . . .
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Invariance
Example

H =

−4.8 10.6 −3.8
−5.8 11.6 −3.8
−6.7 12.4 −3.7

 , z =

1
1
1


Multiply: −4.8 10.6 −3.8

−5.8 11.6 −3.8
−6.7 12.4 −3.7

1
1
1

 =

2
2
2


Hz = 2z

(2,

1
1
1

) is an eigen-pair of H.
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Invariance
Example

Krylov sequence induced by H and z is1
1
1


︸︷︷︸

z

,

2
2
2


︸︷︷︸

2z

,

4
4
4


︸︷︷︸

4z

,

8
8
8


︸︷︷︸

8z

, . . . ,

2j

2j

2j


︸︷︷ ︸

2jz

, . . .

Kn(H, z) = span{z} = span


1

1
1

 for any n.

Invariant Subspace with respect to H

Eigenspace
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Invariance
Example

(
1
2
,

2
2
3

) is another eigen-pair of H

−4.8 10.6 −3.8
−5.8 11.6 −3.8
−6.7 12.4 −3.7

2
2
3

 =

 1
1

1.5


Krylov sequence:2

2
3

 ,
 1

1
1.5

 ,
 0.5

0.5
0.75

 ,
 0.25

0.25
0.375

 , . . . ,
2 · 2−j

2 · 2−j

3 · 2−j

 , . . .
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Invariance
Example

H =

−4.8 10.6 −3.8
−5.8 11.6 −3.8
−6.7 12.4 −3.7


Eigenvalues of H are 2, 1

2 , (and 1)

2 is the dominant eigenvalue, with eigenvector z1 =

1
1
1


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Krylov Sequence Convergence

Sequence usually converges to the dominant eigenvector

2 is the dominant eigenvalue of H, with eigenvector

1
1
1


Generate a Krylov sequence with H and almost any start
vector r. Say,

r =

 0
−1
−4

 =

1
1
1


︸︷︷︸

z1

− 2

2
2
3


︸ ︷︷ ︸

2z2

+

3
2
1


︸︷︷︸

z3
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Krylov Sequence Convergence

Sequence usually converges to the dominant eigenvector

2 is the dominant eigenvalue of H, with eigenvector

1
1
1


Generate a Krylov sequence with H and almost any start
vector r.

Hr = H

 0
−1
−4

 = H

1
1
1


︸ ︷︷ ︸

Hz1

− 2H

2
2
3


︸ ︷︷ ︸

2Hz2

+ H

3
2
1


︸ ︷︷ ︸

Hz3
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Krylov Sequence Convergence

Sequence usually converges to the dominant eigenvector

2 is the dominant eigenvalue of H, with eigenvector

1
1
1


Generate a Krylov sequence with H and almost any start
vector r.

Hr =

3
2
0

 =

2
2
2


︸︷︷︸

2z1

−

2
2
3


︸︷︷︸
2· 12 z2

+

3
2
1


︸︷︷︸

z3
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Krylov Sequence Convergence

Compute r,Hr,H2r,H3r, . . .: 0
−1
−4

 ,
3

2
0

 ,
 6

5
3.5

 , . . . ,
1027

1026
1025


︸ ︷︷ ︸

H10r

, . . .

Converges to a multiple of

1
1
1

 (dominant eigenvector) quickly.
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Krylov Sequence Convergence

Actually, power iterations compute

v1 =
r
‖r‖

, v2 =
Hv1

‖Hv1‖
=

H2r
‖H2r‖

, v3 =
Hv2

‖Hv2‖
=

H3r
‖H3r‖

, . . .

 0
−0.2425
−0.9701


︸ ︷︷ ︸

v1

,

0.8321
0.5547

0


︸ ︷︷ ︸

v2

,

 0.701
0.5842
0.4089


︸ ︷︷ ︸

v3

, . . . ,

0.5779
0.5774
0.5768


︸ ︷︷ ︸

v10

, . . .
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Krylov Sequence Convergence

Using Power Iterations:

Computing basis for

Kn(H, r) = span{r, Hr, H2r, . . . , Hn−1r}

using finite precision arithmetic

We quickly get stuck at the dominant eigenvector
after a few iterations!

(Useful for eigenvalue computation though)

Krylov Subspaces



Krylov Sequence Convergence

In general, for H ∈ CN×N with
N eigenvalues |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λN |
eigenvectors z1, z2, . . . , zN ,

For any start vector r ∈ CN

Hkr = Hk (a1z1 + a2z2 + · · ·+ akzk)

= a1λ
k
1

(
z1 +

∑ aj

a1

(
λj

λ1

)k

zj

)
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Basis for Kn(H, r)

Assuming we don’t get stuck in an invariant subspace, Krylov
vectors {

r,Hr,H2r,H3r, . . . ,Hn−1r
}

Are linearly independent, and span Kn(H, r)

Form a bad basis for Kn(H, r)

Krylov Subspaces



Arnoldi Process
Generates basis for Krylov subspace

Arnoldi process computes orthogonal basis matrix
Vn = [v1 v2 ... vn] for Krylov subspace Kn(H, r):

v1 = r/‖r‖
v2 = (Hv1 orthogonalized against v1)
...
vn = (Hvn−1 orthogonalized against {v1, v2, . . . , vn−1})

Krylov Subspaces



Arnoldi Process
Computationally expensive for large N

The n-th iteration of Arnoldi

vn+1 ≈ (Hvn orthogonalized against {v1, v2, . . . , vn})
= Hvn − α1v1 − α2v2 − · · · − αnvn

where

αj =
vH

j vn

‖vj‖

For large N (≈ 106)
computing each αj requires ≈ 2N scalar multiplications &
additions.
Computing vn ∈ CN grinds to a halt with increasing n !
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Application: RCL Circuit Simulation

Why simulate a circuit?

Krylov Subspaces



VLSI Circuit Model Reduction

Example: RCL circuit
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Circuit Equations
(You Don’t Need To Understand This!!)

Equations determining any circuit determined via

Kirchhoff’s current and voltage laws (KCLs, KVLs)
Branch Constitutive Relations (BCRs)

KCLs, KVLs of the circuit can be stated as

Aiε = 0 and ATv = vε

with incidence matrix

A =
[
Ar Ac Al Av Ai

]
,

and current, voltage vectors

iε =


ir
ic
il
iv
ii

 , vε =


vr

vc

vl

vv

vi

 .
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Circuit Equations
(You Don’t Need To Understand This!!)

Equations determining any circuit determined via

Kirchhoff’s current and voltage laws (KCLs, KVLs)
Branch Constitutive Relations (BCRs)

BCRs of the circuit can be stated as

vr(t) = Rir(t), ic(t) = C
d
dt

vc(t), vl(t) = L
d
dt

il(t)

R, C, and L are diagonal matrices containing resistances,
capacitances, inductances of components
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RCL Circuit Equations
Realization

Then we formulate Realization of the circuit:

Block matrices

A =

A11 −Al −Av

AT
l 0 0

AT
v 0 0

 , E =

E11 0 0
0 L 0
0 0 0

 , B =

Ai 0
0 0
0 −I

 ,
where

A11 = −ArR−1AT
r and E11 = AcCAT

c .

A,E ∈ RN×N and B ∈ RN×p sparse, large (N > 106).
Any A, E, B having this structure determine a RCL circuit.
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Unreduced Model (RCL Circuit)
Descriptor System

Input-Output system represented as a system of Differential
Algebraic Equations (DAEs)

u1(t) −→
u2(t) −→

...
up(t) −→

Ex′ = Ax + Bu

y = BTx,

−→ y1(t)
−→ y2(t)

...
−→ yp(t)

where A,E ∈ RN×N (possibly singular), B ∈ RN×p.

u(t), y(t) ∈ Rp input,output vectors
x(t) ∈ RN represents internal state space (to be reduced).
Behavior of model: y(t) = F(u(t))

Krylov Subspaces



Reduced Order Model (ROM) via Projection

System of DAEs of the same form

u1(t) −→
u2(t) −→

...
up(t) −→

Enx′ = Anx + Bnu

y = BT
n x

−→ y1(t)
−→ y2(t)

...
−→ yp(t)

An := VT
n AVn, En := VT

n EVn ∈ Rn×n

Bn := VT
n Bn ∈ Rn×p,

with state-space dimension n� N and Vn ∈ RN×n is basis for
some ideal space.
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Transfer Function
Relates Output directly to Input in Frequency Domain

Original system:

Ex′ = Ax + Bu

y = BTx.

Applying the Laplace transform,

sEX(s) = AX(s) + BU(s)

Y(s) = BTX(s).

In the frequency domain,

Y(s) = BT(sE − A)−1BU(s) ≡ H(s)U(s).

Krylov Subspaces



Transfer Function
Relates Output directly to Input

In the frequency domain, Y(s) = H(s)U(s) with transfer function

H(s) = BT(sE − A)−1B ∈ (C ∪∞)p×p

Figure: ‖H(s)‖ vs. frequency for N = 1841 test model
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Transfer Function
Domain S ∈ C

We consider H(s) over s ∈ S.

S = 2πif , f ∈ [fmin, fmax]

Krylov Subspaces



Pole decomposition of model
Example: poles of a size N = 1841 test model

log10 scale on Re axis. Dot size indicates dominance.

Krylov Subspaces



Transfer Function
Input→ Output Map in Frequency Domain

In the frequency domain, Y(s) = H(s)U(s) with transfer function

H(s) = BT(sE − A)−1B ∈ (C ∪∞)p×p

For the reduced model,

Hn(s) = BT
n (sEn − An)−1Bn ∈ (C ∪∞)p×p

Hn(s) ≈ H(s) ⇐⇒ ‘Good’ Reduced Order Model
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Local Convergence of ROM

Reduced order transfer function

Hn(s) = BT
n (sEn − An)−1Bn

Figure: ‖H15(s)‖ converges near placement of s0
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Moment Matching

Expressed as Taylor series expansion about s0 ∈ C:

Original: H(s) =
∞∑

j=0

(s− s0)jMj

ROM: Hn(s) =
∞∑

j=0

(s− s0)jM̃j

ROM matches n moments about s0 if M̃j = Mj for
j = 0, 1, . . . , n− 1.
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Transfer function
Single-matrix formulation

Choose expansion point s0 ∈ C, re-write H(s) as

H(s) = BT(sE − A)−1B

= BT (I − (s− s0)H)−1 R

(Single matrix formulation), where

H := −(s0E − A)−1E and R := (s0E − A)−1B.
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Moments of the transfer function about s0

Via Neumann (geometric series) expansion,

H(s) = BT (I − (s− s0)H)−1 R

= BT

 ∞∑
j=0

(s− s0)jHj

R

=
∞∑

j=0

(s− s0)jBTHjR

This the Taylor series expansion of H(s) about s0.
Recall Block-Krylov sequence

R,HR,H2R, . . .HjR, . . .
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Moment matching

...suggests n-th Block-Krylov subspace

Kn(H,R) := span
{

R,HR,H2R, . . . ,Hn−1R
}
.

For V ∈ RN×n such that

Kn(H,R) ⊆ range V,

ROM via projection on to V matches n moments about s0.

BT
n H̃jR̃ = BTHjR for j = 0, 1, 2, . . . , n− 1

because BT
n H̃jR̃ = BTVH̃jR̃ = BTHjR

Krylov Subspaces



Reduced Order Model (ROM) via Projection

System of DAEs of the form

u1(t) −→
u2(t) −→

...
up(t) −→

Enx′ = Anx + Bnu

y = BT
n x

−→ y1(t)
−→ y2(t)

...
−→ yp(t)

An := VT
n AVn, En := VT

n EVn ∈ Rn×n

Bn := VT
n Bn ∈ Rn×p,

with n� N and Vn ∈ RN×η such that

Kn(H,R) ⊆ range Vn.
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How Much Reduction Possible?

Experimentally, on the order of 2ℵ0

But this can be improved. (current ongoing research)
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The End

Thanks a lot SJSU Math!
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