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Krylov Subspaces



Basic Linear Algebra

Take H € CV*N and r € CN. The matrix-vector product

Hr e CN
is a vector.
Example in R3:
1 2 3 1 6
4 5 6 1| = 1|15
2 7 3 1 12
T\;—/
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Basic Linear Algebra

Take H € CV*N and block R € CV*?. The product
HR € CN*»

isan N x p block.
Example in R3:
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Krylov Sequence

Successive applications of operator H to a start vector r
r,Hr, HHr, HHHYr, . . .
result in the Krylov sequence

r,Hr, Hzr, H3r, o
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Krylov Sequence

1 2 316 72
@ Hor=14 5 6| |15] = 171]
2 7 3] [12 153
1 2 3] [72 873
e Hr=14 5 6| [171] = 2061]
2 7 3] [153 1800
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Krylov Sequence

The Krylov sequence induced by H and r is

17 [6] 727 8737 [10395
1], |15], [171], |2061], [24597],... € R
1] [12] [153] [1800| |21573

—~ Y e ———

r Hr H?r H3r H*r
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Krylov Subspace
Example

The 3rd Krylov subspace induced by H and r:
K3(H,r) = span {r,Hr, H2r}

All of the following are in IC3(H, r)
°r
@ H’r+ 2Hr
@ r+3Hr + 5H?r

In fact,

cor + c{Hr + coH*r  for any cg,ci,c0 €C
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Krylov Subspace

For H € CN*N and r € CV,
@ Biggest possible Krylov subspace is N-th

Ky(H,r) = span {r,Hr,Hzr, . ,HNflr} ccV

Example: Recall in R?

~N N

1
H= |4
2

w o W
~
Il
—

Krylov sequence is

1 6 72 873
1), [15], [171], [2061],...
1 12 153 1800

~ Y Y ———

r Hr H?r H3r

Krylov Subspaces



Invariance
Example

—4.8 106 -3.8 1
H=|-58 11.6 -38|, z=
—-6.7 124 -3.7 |1
Multiply:
—4.8 106 —3.8] |1 2]
—58 11.6 38| (1| =2
—6.7 124 -=3.7| |1 2]
@ Hz; =27

1
@ (2, [1]) is an eigen-pair of H.
1
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Invariance
Example

Krylov sequence induced by H and z is

TR

—_ =~
z 2z 4z 8z 2z

1
@ K,(H,z) = span{z} = span{ |:1] } for any n.
1

@ Invariant Subspace with respect to H
@ Eigenspace
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Invariance
Example

2

(77
2 |3

—4.8
—5.8
—6.7

Krylov sequence:

2 1
205 15
3] |15

2)

is another eigen-pair of H

10.6
11.6
12.4

0.5
0.5
0.75

)

—-3.8
-3.8
3.7

0.25
0.25
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2.270 ...
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Invariance
Example

—-4.8 106 -—-3.8
H=|-58 11.6 —-3.8
—-6.7 124 -3.7

e Eigenvalues of H are 2, 1, (and 1)

@ 2 is the dominant eigenvalue, with eigenvector z; = |1
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Krylov Sequence Convergence

Sequence usually converges to the dominant eigenvector

@ 2 is the dominant eigenvalue of H, with eigenvector {1]

@ Generate a Krylov sequence with H and almost any start

vector r. Say,
0 1 2
r=|—1|=11]-212|+
—4 1 3
— Y~ =~

— N W

41 275 23
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Krylov Sequence Convergence

Sequence usually converges to the dominant eigenvector

@ 2 is the dominant eigenvalue of H, with eigenvector |1

@ Generate a Krylov sequence with H and almost any start
vector r.

0 1 2 3
Hr=H |—-1|=H|1| -2H |2| +H |2
—4 1 3 1

—— N N~

HZl 21‘122 HZ3
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Krylov Sequence Convergence

Sequence usually converges to the dominant eigenvector

@ 2 is the dominant eigenvalue of H, with eigenvector {1]

@ Generate a Krylov sequence with H and almost any start
vector r.

271 z.lzz 3
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Krylov Sequence Convergence

Compute r, Hr, H*r,H’r, . . ..

0 31 [6 1027
-1 ,(2(,[5],...,]1026],...
—4 0] (3.5 1025

—_——
H0r

1
Converges to a multiple of 1} (dominant eigenvector) quickly.
1
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Krylov Sequence Convergence

Actually, power iterations compute

r Hv, H*r y Hv, H3r
Vv :7, Vo = = s e = s
P P A B T (Hwl T ER|
0 0.8321 0.701 0.5779
—0.2425(,10.5547], [0.5842],..., |10.5774],...
—0.9701 0 0.4089 0.5768
N N\ e, ! N —
Vi Vo V3 V1o
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Krylov Sequence Convergence

Using Power lterations:
Computing basis for
K.(H,r) = span{r,Hr,H*r,... , H" 'r}

using finite precision arithmetic

o We quickly get stuck at the dominant eigenvector
after a few iterations!

o (Useful for eigenvalue computation though)
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Krylov Sequence Convergence

In general, for H € CV*N with
@ N eigenvalues || > [\ > A3 = -+ > ||
@ eigenvectors zy,22, - - -, 2n,

For any start vector r € CV

H'r = H" (0121 + arzo + - + axzi)

VS VA
= a )| (m +Z% <)\j1> Zj>
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Basis for KC,(H, r)

Assuming we don’t get stuck in an invariant subspace, Krylov
vectors
{r, Hr,H’r,H’r, ... ,H"*Ir}

@ Are linearly independent, and span K,(H, r)

@ Form a bad basis for K,(H, r)
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Arnoldi Process
Generates basis for Krylov subspace

Arnoldi process computes orthogonal basis matrix
V, = [viva ... v, for Krylov subspace K, (H,r):

o vi=r/|rl
(Hv; orthogonalized against v;)

@ v

@ v, = (Hv,— orthogonalized against {vi,va,...,vy—1})
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Arnoldi Process
Computationally expensive for large N

The n-th iteration of Arnoldi

vut1 =~ (Hv, orthogonalized against {vi,va,...,v,})

=Hv, —ajvi —apvy — -+ — QuVy,

where
R
o =
7 vl
For large N (= 10°)
@ computing each «; requires ~ 2N scalar multiplications &
additions.

@ Computing v, € CV grinds to a halt with increasing » !
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Application: RCL Circuit Simulation

@ Why simulate a circuit?
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VLSI Circuit Model Reduction

Example: RCL circuit
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Circuit Equations

(You Don’t Need To Understand This!!)

Equations determining any circuit determined via

@ Kirchhoff’s current and voltage laws (KCLs, KVLs)
@ Branch Constitutive Relations (BCRs)

KCLs, KVLs of the circuit can be stated as
Ai.=0 and Alv =y,
with incidence matrix
A=[A A A A, A,
and current, voltage vectors

i vy
le Ve
le = |U| ,Ve= [|VI
Ly Vy
li Vi
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Circuit Equations

(You Don’t Need To Understand This!!)

Equations determining any circuit determined via

@ Kirchhoff’s current and voltage laws (KCLs, KVLs)
@ Branch Constitutive Relations (BCRs)

BCRs of the circuit can be stated as

wlt) = Rir(0),iet) = Cpve(t), wle) = L0

@ R, C, and L are diagonal matrices containing resistances,
capacitances, inductances of components
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RCL Circuit Equations
Realization

Then we formulate Realization of the circuit:

Block matrices

A —A —A, E;; 0 0 A 0
A=A 0 0|, E=|{0 L 0|, B=|0 0],
AT 0 0 0 0 0 0 —I

where

A =-AR'AT and E;; = A.CAL.

@ A, E € RV*N and B € RV*? sparse, large (N > 10°).
@ Any A, E, B having this structure determine a RCL circuit.
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Unreduced Model (RCL Circuit)

Descriptor System

Input-Output system represented as a system of Differential
Algebraic Equations (DAEs)

ul(t) — — ()

ur(t) — Ex' = Ax + Bu — (1)
. y — BTx, -

w(t) — —  »l)

where A, E € RV*N (possibly singular), B € RV*?.

@ u(1),y(t) € R? input,output vectors
@ x(1) € R" represents internal state space (to be reduced).
@ Behavior of model: y(1) = F(u(1))
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Reduced Order Model (ROM) via Projection

System of DAEs of the same form

u(t) — — ()

u2(t) I Enx/ =Aux + Buu - yz([)
y= B,fx :

up(r)  — —  »()

A, :=VIAV, E,.=VI'EV, <R
B, :=VIB, c R™P,

with state-space dimension n < N and V,, € RV*" is basis for
some ideal space.
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Transfer Function
Relates Output directly to Input in Frequency Domain

Original system:

Ex' = Ax + Bu
y:BTx.

Applying the Laplace transform,

sEX(s) = AX(s) + BU(s)
Y(s) = BTX(s).

In the frequency domain,

Y(s) = BT (sE — A)"'BU(s) = H(s)U(s).
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Transfer Function

Relates Output directly to Input
In the frequency domain, Y(s) = H(s)U(s) with transfer function

H(S) = BT(SE _A)*lB c ((C U Oo)pxp

frg x10’

Figure: ||H(s)| vs. frequency for N = 1841 test model
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Transfer Function

Domain S € C

We consider H(s) over s € S.

S = 27Tlf, f c [fminvfmax]

Complex Plan

[H(s)!
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Pole decomposition of model

Example: poles of a size N = 1841 test model

1 I LT 1 1 I 1 I
-12 -10 -8 -6 -4 -2 o

log,, scale on Re axis. Dot size indicates dominance.
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Transfer Function
Input — Output Map in Frequency Domain

In the frequency domain, Y(s) = H(s)U(s) with transfer function
H(s)=B"(sE—A)"'B € (CUoco)P*P
For the reduced model,

H,(s) = BI(sE, —A,)"'B, € (CUoo)P*P

H,(s) ~ H(s) <= ‘Good’ Reduced Order Model
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Local Convergence of ROM

Reduced order transfer function

H,(s) = BI'(sE, — A,)"'B,

— — — actual
proj

Figure: ||H;s(s)|| converges near placement of s,
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Moment Matching

Expressed as Taylor series expansion about sy € C:

[e.o]

Original:  H(s) =Y (s — so}M;
j=0

ROM:  Hy(s) =) (s — 50/ M;
Jj=0

ROM matches n moments about so if M; = M; for
j=0,1,...,n—1.
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Transfer function
Single-matrix formulation

Choose expansion point sy € C, re-write H(s) as

H(s) =B'(sE—A)"'B
=B (I—(s—s0)H) 'R

(Single matrix formulation), where

H:=—(s)E—A)"'E and R:=(spf —A)"'B.
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Moments of the transfer function about sy

Via Neumann (geometric series) expansion,
H(s)=B" (I— (s—so)H) 'R
e . .
=BT Z(s —so/H | R
j=0

o0
= Z(s — so)’BTH]R
=0

@ This the Taylor series expansion of H(s) about sp.
@ Recall Block-Krylov sequence

R,HR,H?R,...H'R, ...
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Moment matching

...suggests n-th Block-Krylov subspace
KCu(H,R) := span {R,HR,H°R, ... ,.H" 'R} .
For V € R¥*" such that
K.(H,R) CrangeV,
ROM via projection on to V matches n moments about s.

BTHR =B"HR for j=0,1,2,...,.n—1

@ because BTH'R = B'"VH'R = BTH/R
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Reduced Order Model (ROM) via Projection

System of DAEs of the form

u () — — (1)

wp(t) — E.xX' = Aux + Buu — (1)
y= B,{x :

up(t)  — — (1)

A, :=VIAV, E,:=VI'EV, <R

B, := VIB, € R™P,
with n < N and V,, € RV*" such that

K.(H,R) C rangeV,,.
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How Much Reduction Possible?

Experimentally, on the order of 2R,

@ But this can be improved. (current ongoing research)
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The End

Thanks a lot SUSU Math!

SAN JOSE STATE
UNIVERSITY
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