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What is an Isoperimetric Inequaity?



Metric Spaces
A Metric Space (X, d) is a set of points X along with a distance
function d : X x X — R such that
» d(x,y)=0ifandonlyif x =y
> d(x,y) =d(y,x)
» d(x,y) <d(x,z)+ d(z,y) (triangle inequality)
Ex: R" = {(x1,X2,...,Xn) : X; € R (i.e., each x; is a real number)}
with the Euclidean (“straight line”) distance:

(X - Xn). V- Yn) = /(6 = 3102 o+ (X — Y2



Ex: ¢1-metric on R", otherwise known as “taxicab metric”

d1((X1a-'~7Xn)7(y17"';yn)):|X1 _y1|++|xn_yn|
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Ex: /.-metric on R"
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Ex: /.-metric on R"
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for a fixed volume.
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Euclidean Isoperimetry



Euclidean Distance and Boundary

Theorem (The Euclidean Isoperimetric Inequality)
Let A C R" be a compact set and let V(A) denote the Lebesgue
measure of A in R". Define

where
Ap={x eR":||x — al||2 < h for some a € A}

Let B, be the Euclidean ball whose Lebesgue measure is the same
as that of A. Then
b(A) = b(Ba)

and equality holds true if and only if A is a Euclidean ball.




Fun Proof using Brunn-Minkowski

Define
A+B={a+b:acAbecB}
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Theorem (Brunn-Minkowski Inequality)

Let A, B C R" be nonempty, bounded, measurable sets such that
A+ B is also measurable. Then

Vol(A+ B)'/" > Vol(A)'/™ + Vol(B)"/"
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Theorem (Brunn-Minkowski Inequality)

Let A, B C R" be nonempty, bounded, measurable sets such that
A+ B is also measurable. Then

Vol(A+ B)'/" > Vol(A)'/" + VoI(B)"/"
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(2) =1+ (o)

1.87082869... > 14 0.707106781 . ..



Using Brunn-Minkowski to prove the Isoperimetric
Inequality for R”

Let A C R", have the same volume as the ball of radius 1 in R":
By ={xeR":d(x,0) <1}

We would like to show that A has boundary at least as big as the
boundary of B;.



Using Brunn-Minkowski to prove the Isoperimetric
Inequality for R”

Let A C R", have the same volume as the ball of radius 1 in R":
By ={xeR":d(x,0) <1}

We would like to show that A has boundary at least as big as the
boundary of By. Define

Ar={xeR": forsome ac A d(a, x) <t}

Then the boundary of A is

im VOI(A) — Vol(A)
t—0 t




Additionally, if we denote
B; = ball centered at origin of radius t = {x € R" : d(x,0) < t} then

A=A+ B

.l.:. — :.




Additionally, if we denote
B; = ball centered at origin of radius t = {x € R" : d(x,0) < t} then

A=A+ B

Thus, using Brunn-Minkowski, we have

Vol(A;)Y/" = Vol(A+ B)"/™ > Vol(A)'/" 4 Vol(By)'/"
= VolI(By)"/™ + Vol(By)'/™
= Vol(By)"/™ + Vol(tBy)'/"
= Vol(By)"/" + (t"Vol(By))'/"
= (14 t)Vol(By)"/" = (1 + t)"VolI(By))"/"
= Vol(By_1)"/" = VoI((By))'/"



Thus, we have
Vol(A;) > Vol((B1):)

so that

i Vol(A) —VoI(A) _ . Vol((By):) — Vol(B1)

t—0 t T t—0 t
BoundaryVolume(A) > BoundaryVolume(B;)

Thus, for a fixed volume, the ball has the smallest boundary!
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Discrete Isoperimetry in Z"



A graph defined on Z"
A graphis a set of vertices V, along with a set of edges E Cc V x V.
We typically visualize a graph with dots for the vertices, arcs for the
edges:

We consider the infinite graph whose vertices are Z" and edges are
between two points whose /., distance is 1.




Boundary of a subset of Z”

For A C Z", we define the boundary of A, 9A, to be the set of vertices
whose distance from A is no more than 1:

0A={x€Z": dx(x,a) <1 forsome ac A}




Boundary of a subset of Z”

For A C Z", we define the boundary of A, 9A, to be the set of vertices
whose distance from A is no more than 1:

0A={x€Z": dx(x,a) <1 forsome ac A}

Note: This is slightly different from our earlier discussions of
boundary, as this definition implies that A C JA.



Q: What sets of size 1,2, 3, ... have the smallest possible boundary?
In Z2:
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Theorem (V.)
There exists an ordering on the vertices Z" such that a set with
minimal boundary is achieved at an initial segment.

In other words, suppose we write the elements of Z” in a list
according to this ordering.

1.(0,0,0) | 6.(1,0,1) | 1. (1,0,-1) | 16. (1,-1,1)
2.(0,0,1) | 7.(1,1,00 [12. (A,1,-1) | 17.(0,-1,-1)
3.(0,1,0) | 8.(1,1,1) | 13.(0,-1,0) | 18. (1,-1,-1)
4.(0,1,1) | 9.(0,0,-1) | 14. (0,-1,1) | 19. (-1,0,0)
5.(1,0,0) | 10. (0,1,-1) | 15.(1,-1,0) | 20. (-1,0,1)

Define I to be the set containing the first k elements in this list. Then
forany A C Z" with |A] = k,

|0lk| < |0A|



Idea of Proof: Pick any A C Z" of size k. Pick i € {1,2,..., n}. Look
at the “n — 1-dimensional sections” of A:

A,"o :{(X1,X2,...,Xn) EAZX,':O}
A,'71 = {(X1,X2,...,Xn) EAZX,': 1}
A,'7_1 Z{(X17X2,...7Xn) EA:X,':—1}

“Compress” each of those sets by replacing them with
n — 1-dimensional initial segments.
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Compressing on the first coordinate:
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The resulting set has a boundary of no larger size.



Idea of proof, con't.
Continue, compressing with respect to other indices.
If you can’t compress any more, you may need to “jiggle” the set a

little (not increasing the boundary) so that you can finally compress to
an initial segment.

In every step, we didn’t increase the boundary, thus the initial
segment provides a lower bound on the boundary.



Idea of proof, con't.
Continue, compressing with respect to other indices.
If you can’t compress any more, you may need to “jiggle” the set a

little (not increasing the boundary) so that you can finally compress to
an initial segment.

In every step, we didn’t increase the boundary, thus the initial
segment provides a lower bound on the boundary.

Remark: This method of compression is common in the theory of
discrete isoperimetric inequalities.
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Discrete Isoperimetry With Phase Changes



A Similar Graph

Now we consider the graph [m]” = {0,1,2,...,m—1}" where two
vertices are connected by an edge precisely when their d.,-distance
is 1:




Q: Which sets in this graph have minimum boundary?
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Upshot

Sets of minimal boundary in R” with the Eudlidean distance are
spheres:

Sets of minimal boundary in Z" with the ¢, distance grow like boxes,
and parts of boxes:

Thus, in both of these cases, the sets of minimal boundary are
nested.



But as we saw for the graph [6]2, sets of minimal boundary may not
be nested
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» For general [m]” (using the /., metric), what sets have minimum
boundary?
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exiting it



Open Questions

» For general [m]” (using the /., metric), what sets have minimum

boundary?

» For Z7. (using the ¢, metric), what sets have minimum
boundary?

» Define the “edge boundary” of a set to be the number of edges
exiting it

For Z7, (using the /., metric), what sets have minimum edge
boundary?
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