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Metric Spaces
A Metric Space (X ,d) is a set of points X along with a distance
function d : X × X → R such that

I d(x , y) = 0 if and only if x = y
I d(x , y) = d(y , x)
I d(x , y) ≤ d(x , z) + d(z, y) (triangle inequality)

Ex: Rn = {(x1, x2, . . . , xn) : xi ∈ R (i.e., each xi is a real number)}
with the Euclidean (“straight line”) distance:

d((x1, . . . , xn), (y1, . . . , yn)) =
√
(x1 − y1)2 + · · ·+ (xn − yn)2



Ex: `1-metric on Rn, otherwise known as “taxicab metric”

d1((x1, . . . , xn), (y1, . . . , yn)) = |x1 − y1|+ · · ·+ |xn − yn|

d1((1,0), (1,1)) = 1 d1((0,1), (1,1)) = 1
d1((1,0), (0,1)) = 2 d1((0,1), (2,3)) = 4
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Ex: `∞-metric on Rn

d∞((x1, . . . , xn), (y1, . . . , yn)) = max
i=1,2,...,n

{|xi − yi |}
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Iso-Perimetry and Inequalities

“Iso” = The Same
“Perimeter” = Perimeter / Boundary
“Isoperimetric Inequality” = Inequality giving an upper bound on the
“volume” for a set with fixed “boundary”

Equivalently, an inequality giving the minimum size of the boundary
for a fixed volume.
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Euclidean Distance and Boundary
Theorem (The Euclidean Isoperimetric Inequality)
Let A ⊂ Rn be a compact set and let V (A) denote the Lebesgue
measure of A in Rn. Define

b(A) = lim
h→0+

V (Ah)− V (A)
h

where
Ah = {x ∈ Rn : ||x − a||2 ≤ h for some a ∈ A}

Let BA be the Euclidean ball whose Lebesgue measure is the same
as that of A. Then

b(A) ≥ b(BA)

and equality holds true if and only if A is a Euclidean ball.



Fun Proof using Brunn-Minkowski

Define
A + B = {a + b : a ∈ A,b ∈ B}
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Theorem (Brunn-Minkowski Inequality)
Let A,B ⊂ Rn be nonempty, bounded, measurable sets such that
A + B is also measurable. Then

Vol(A + B)1/n ≥ Vol(A)1/n + Vol(B)1/n

21/1 ≥ 11/1 + 11/1

41/2 ≥ 11/2 + 11/2
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Using Brunn-Minkowski to prove the Isoperimetric
Inequality for Rn

Let A ⊂ Rn, have the same volume as the ball of radius 1 in Rn:

B1 = {x ∈ Rn : d(x ,0) ≤ 1}

We would like to show that A has boundary at least as big as the
boundary of B1.

Define

At = {x ∈ Rn : for some a ∈ A,d(a, x) ≤ t}

Then the boundary of A is

lim
t→0

Vol(At)− Vol(A)
t
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Additionally, if we denote
Bt = ball centered at origin of radius t = {x ∈ Rn : d(x ,0) ≤ t} then

At = A + Bt

Thus, using Brunn-Minkowski, we have

Vol(At)
1/n = Vol(A + Bt)

1/n ≥ Vol(A)1/n + Vol(Bt)
1/n

= Vol(B1)
1/n + Vol(Bt)

1/n

= Vol(B1)
1/n + Vol(tB1)

1/n

= Vol(B1)
1/n + (tnVol(B1))

1/n

= (1 + t)Vol(B1)
1/n = ((1 + t)nVol(B1))

1/n

= Vol(B1+t)
1/n = Vol((B1)t)

1/n
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Thus, we have
Vol(At) ≥ Vol((B1)t)

so that

lim
t→0

Vol(At)− Vol(A)
t

≥ lim
t→0

Vol((B1)t)− Vol(B1)

t
BoundaryVolume(A) ≥ BoundaryVolume(B1)

Thus, for a fixed volume, the ball has the smallest boundary!
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A graph defined on Zn

A graph is a set of vertices V , along with a set of edges E ⊂ V × V .
We typically visualize a graph with dots for the vertices, arcs for the
edges:

We consider the infinite graph whose vertices are Zn and edges are
between two points whose `∞ distance is 1.

· · ·
... · · ·

· · · · · ·
...



Boundary of a subset of Zn

For A ⊂ Zn, we define the boundary of A, ∂A, to be the set of vertices
whose distance from A is no more than 1:

∂A = {x ∈ Zn : d∞(x ,a) ≤ 1 for some a ∈ A}

Note: This is slightly different from our earlier discussions of
boundary, as this definition implies that A ⊂ ∂A.
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Q: What sets of size 1,2,3, . . . have the smallest possible boundary?

In Z2:
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Theorem (V.)
There exists an ordering on the vertices Zn such that a set with
minimal boundary is achieved at an initial segment.

In other words, suppose we write the elements of Zn in a list
according to this ordering.

1. (0,0,0) 6.(1,0,1) 11. (1,0,-1) 16. (1,-1,1)
2. (0,0,1) 7. (1,1,0) 12. (1,1,-1) 17. (0,-1,-1)
3. (0,1,0) 8. (1,1,1) 13. (0,-1,0) 18. (1,-1,-1)
4. (0,1,1) 9. (0,0,-1) 14. (0,-1,1) 19. (-1,0,0)
5. (1,0,0) 10. (0,1,-1) 15.(1,-1,0) 20. (-1,0,1)

Define Ik to be the set containing the first k elements in this list. Then
for any A ⊂ Zn with |A| = k ,

|∂Ik | ≤ |∂A|



Idea of Proof: Pick any A ⊂ Zn of size k . Pick i ∈ {1,2, . . . ,n}. Look
at the “n − 1-dimensional sections” of A:

Ai,0 = {(x1, x2, . . . , xn) ∈ A : xi = 0}
Ai,1 = {(x1, x2, . . . , xn) ∈ A : xi = 1}

Ai,−1 = {(x1, x2, . . . , xn) ∈ A : xi = −1}
...

“Compress” each of those sets by replacing them with
n − 1-dimensional initial segments.

For example:
A = {(2,3,1,4), (2,−2,−1,0), (2,0,−1,5), (7,2,3,−1)}

Compressing on the first coordinate:
{(2,0,0,0), (2,0,0,1), (2,0,1,0), (7,0,0,0)}

The resulting set has a boundary of no larger size.
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Idea of proof, con’t.
Continue, compressing with respect to other indices.

If you can’t compress any more, you may need to “jiggle” the set a
little (not increasing the boundary) so that you can finally compress to
an initial segment.

In every step, we didn’t increase the boundary, thus the initial
segment provides a lower bound on the boundary.

Remark: This method of compression is common in the theory of
discrete isoperimetric inequalities.
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A Similar Graph

Now we consider the graph [m]n = {0,1,2, . . . ,m − 1}n where two
vertices are connected by an edge precisely when their d∞-distance
is 1:



Q: Which sets in this graph have minimum boundary?

Ex: [6]2
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Upshot
Sets of minimal boundary in Rn with the Eudlidean distance are
spheres:

Sets of minimal boundary in Zn with the `∞ distance grow like boxes,
and parts of boxes:

Thus, in both of these cases, the sets of minimal boundary are
nested.



But as we saw for the graph [6]2, sets of minimal boundary may not
be nested



Open Questions

I For general [m]n (using the `∞ metric), what sets have minimum
boundary?

I For Zn
m (using the `∞ metric), what sets have minimum

boundary?
I Define the “edge boundary” of a set to be the number of edges

exiting it

For Zn
m (using the `∞ metric), what sets have minimum edge

boundary?



Open Questions

I For general [m]n (using the `∞ metric), what sets have minimum
boundary?

I For Zn
m (using the `∞ metric), what sets have minimum

boundary?

I Define the “edge boundary” of a set to be the number of edges
exiting it

For Zn
m (using the `∞ metric), what sets have minimum edge

boundary?



Open Questions

I For general [m]n (using the `∞ metric), what sets have minimum
boundary?

I For Zn
m (using the `∞ metric), what sets have minimum

boundary?
I Define the “edge boundary” of a set to be the number of edges

exiting it

For Zn
m (using the `∞ metric), what sets have minimum edge

boundary?



Open Questions

I For general [m]n (using the `∞ metric), what sets have minimum
boundary?

I For Zn
m (using the `∞ metric), what sets have minimum

boundary?
I Define the “edge boundary” of a set to be the number of edges

exiting it

For Zn
m (using the `∞ metric), what sets have minimum edge

boundary?


	What is an Isoperimetric Inequaity?
	Euclidean Isoperimetry
	Discrete Isoperimetry in Zn
	Discrete Isoperimetry With Phase Changes

