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Introduction

My research relates to the study of symmetry, with applications to
Chemistry, Physics, Differential Equations . . . .

In this talk we’ll describe some geometry associated to the symmetric
group of permutations.
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Symmetric Group

The symmetric group Sn is the set of all bijections

σ : {1, 2, . . . , n} → {1, 2, . . . n}

with composition as the group operation.

For example, σ =

[
1 2 3 4 5
2 4 3 5 1

]
and τ =

[
1 2 3 4 5
2 1 4 3 5

]
are

permutations in S5 and if we compose them, we get

τσ =

[
1 2 3 4 5
1 3 4 5 2

]
.
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Symmetric Group

The symmetric group Sn has a presentation with generators

s1, s2, . . . , sn−1

and relations
s2
i = id

si sj = sjsi for |i − j | ≥ 2,

si si+1si = si+1si si+1

We think of each si as an adjacent transposition:

si =

[
1 2 · · · i i + 1 · · · n
1 2 · · · i + 1 i · · · n

]
.
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Symmetric Group

Groups with a similar presentation in terms of generators and relations are
called Coxeter groups. They have generators s1, s2, . . . , sn with each
s2
i = id , and

(si sj)
mij = id .

for some mij ≥ 2. The relation s2
i = id means that si = s−1

i .

For example,
id = (si sj)

2 = si sjsi sj

is equivalent to
sjsi = si sj

and
id = (si sj)

3 = si sjsi sjsi sj

is equivalent to
sjsi sj = si sjsi
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Symmetric Group

The relations in a Coxeter group are often visualized in a combinatorial
graph.

Vertices = generators.

No edge ⇐⇒ (si sj)
2 = id ⇐⇒ si sj = sjsi .

Unlabeled edge ⇐⇒ (si sj)
3 = id ⇐⇒ si sjsi = sjsi sj .

Edge labeled by m ⇐⇒ (si sj)
m = id ⇐⇒ si sjsi · · · = sjsi sj · · · .

For example, Sn has the Coxeter graph

•s1 •s2 •s3 · · · •sn−2 •sn−1
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Symmetric Group

The relation s2
i = id means that si = s−1

i . We can view the generators si

as reflections of a vector space.

Definition

Let u ∈ Rn. A reflection through the hyperplane orthogonal to u is a linear
map su sending

v 7→ v − 2〈u, v〉
〈u, u〉 u
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Symmetric Group

For Sn, we can combine our two points of view if we take a vector space
Rn with orthonormal basis ε1, ε2, . . . , εn.
E.g. let n = 3. Then define α1 = ε1 − ε2 and α2 = ε2 − ε3. Then,

sα1(ε1) = ε1 −
2〈ε1, ε1 − ε2〉
〈ε1 − ε2, ε1 − ε2〉

(ε1 − ε2) = ε1 − (ε1 − ε2) = ε2,

sα1(ε2) = ε2 −
2〈ε2, ε1 − ε2〉
〈ε1 − ε2, ε1 − ε2〉

(ε1 − ε2) = ε2 + (ε1 − ε2) = ε1.

so,

sα1 =

[
ε1 ε2 ε3

ε2 ε1 ε3

]
,

sα2 =

[
ε1 ε2 ε3

ε1 ε3 ε2

]
.
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b

α2

α1

α1 + α2 = ε1 − ε3


1 2 3

1 2 3





1 2 3

2 1 3





1 2 3

2 3 1





1 2 3

3 2 1





1 2 3

3 1 2





1 2 3

1 3 2



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Symmetric Group

A subgroup of Sn is any subset of permutations that is closed under the
composition operation.

One special way this can happen is by taking a subset of the generators,
called a parabolic subgroup.
For example, S4 is a parabolic subgroup of S5:

•s1 •s2 •s3 •s4

These are all the permutations in which the last entry 5 is fixed.

S4 =

[
1 2 3 4 5
∗ ∗ ∗ ∗ 5

]
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Symmetric Group

If we wanted to use our understanding of S4 to understand S5, we could
specify permutations in S5 by

(1) Permute the first four entries.

(2) Move the entry 5 into its final position.

For example, we could build

[
1 2 3 4 5
2 1 5 4 3

]
as

[
1 2 3 4 5
1 2 3 4 5

]
s1→
[

1 2 3 4 5
2 1 3 4 5

]
s3→
[

1 2 3 4 5
2 1 4 3 5

]

s4→
[

1 2 3 4 5
2 1 4 5 3

]
s3→
[

1 2 3 4 5
2 1 5 4 3

]
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Affine Symmetric Group

The affine symmetric group S̃n is presented as a Coxeter group by:

Generators s0, s1, . . . , sn−1, with s2
i = id ,

Commuting relations si sj = id if |i − j | ≥ 2,

Braid relations si si+1si = si+1si si+1 and s0sn−1s0 = sn−1s0sn−1.

•0

uuuuu
LLL

LLL

•1 •2 · · · •n−1

This is an infinite Coxeter group, but notice that it has finite Sn as a
parabolic subgroup.
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Affine Symmetric Group

We can again view the generators si as reflections of a vector space with
orthonormal basis {ε1, ε2, . . . , εn}. The formula for reflection by
s1, s2, . . . , sn−1 is exactly the same as before:

For 1 ≤ i ≤ n − 1, let si be the reflection that interchanges εi and
εi+1

The reflection by s0 is an affine reflection defined on v =
∑n

j=1 ajεj by

s0(v) = (an + 1)ε1 + a2ε2 + · · ·+ an−1εn−1 + (a1 − 1)εn.
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ε1

ε2

ε3

α1 = ε1 − ε2

α2 = ε2 − ε3

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
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Affine Symmetric Group

The simple roots ∆ of type An−1 are

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn−1 = εn−1 − εn.

The Z-span ΛR of ∆ is called the root lattice of type An−1. Note that
these are just vectors whose coordinates sum to 0.

Recall that Sn is a parabolic subgroup of S̃n. It turns out that there is a
unique way to write any affine permutation as a pair

( element of the root lattice , finite permutation )

However, it’s better to look at all the affine permutations that correspond
to a given root lattice point, and choose a special one to represent the
root lattice point. This affine permutation called a minimal length coset
representative.
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ε1

ε2

ε3

α1 = ε1 − ε2

α2 = ε2 − ε3

b

b

b

b

b

b

b

b
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Affine Symmetric Group

We want to study

minimal length coset representatives

↔ integer vectors whose coordinates sum to 0

↔ n-cores

↔ abacus diagrams

and especially, how to project an n-core to an (n − 1)-core?
E.g.

•0

{{
{{ CC

CC

•1 •2 •3

−→ •0

{{
{{

•1 •2
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Core Notation

Let λ = (λ1 ≥ . . . ≥ λr ) be a partition and n ≥ 2 be an integer.

Example

The n-residue of a box (i , j) is the least nonnegative integer ≡ j − i
mod n.
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Core Notation

Let λ = (λ1 ≥ . . . ≥ λr ) be a partition and n ≥ 2 be an integer.

Example

0 1 2 3 0 1 2 3

3 0 1 2 3

2 3

1 2

0

3

2

The n-residue of a box (i , j) is the least nonnegative integer ≡ j − i
mod n.
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Core Notation

Let λ = (λ1 ≥ . . . ≥ λr ) be a partition and n ≥ 2 be an integer.

Example

The hook length of a box (i , j) is the number of boxes to the right and
below the box, including itself. It is denoted hλ(i ,j).
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Core Notation

Let λ = (λ1 ≥ . . . ≥ λr ) be a partition and n ≥ 2 be an integer.

Example

14 10 7 6 5 3 2 1

10 6 3 2 1

6 2

5 1

3

2

1

The hook length of a box (i , j) is the number of boxes to the right and
below the box, including itself. It is denoted hλ(i ,j).
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Cores

Definition

A partition λ is an n-core if n - hλ(i ,j) for every box (i , j) of λ.

Example

14 10 7 6 5 3 2 1

10 6 3 2 1

6 2

5 1

3

2

1

λ is a 4-core.

Brant C. Jones (UC Davis) A bijection on core partitions April 22, 2009 22 / 43



Cores

Question

Given an n-core, how can we project to obtain an (n − 1)-core?

Example

9 5 3 1

7 3 1

5 1

3

2

1

→ 5 2 1

2

1

→ 1

4-core 3-core 2-core
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Cores

n-core partitions index:

Schubert cells in the affine Grassmannian Gr of SL(n,C).
(Gr ∼= SLn(C((t)))/SLn(C[[t]]).)

k-Schur functions and dual k-Schur functions in H∗(Gr) ∼= Λn and
H∗(Gr) ∼= Λn, respectively.

Blocks in the representation theory of the symmetric group Sk over a
field of characteristic n > 0.
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Cores

Cn = The set of all n-cores.

Ck
n = The subset of Cn having first part k .

C≤k
n−1 = The subset of Cn−1 having first part ≤ k.

We will define a bijection

Φk
n : Ck

n → C≤k
n−1

Then, ∑

k≥0

|C k
n |xk =

∑

k≥0

(
k + n − 2

k

)
xk =

1

(1− x)n−1
.

(Proof:

(
k + n − 2

k

)
=

(
k + n − 3

k

)
+

(
k + n − 4

k − 1

)
+ · · ·+

(
n − 3

0

)
.)
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Beta numbers and Abaci

The partition shape is determined by first column hooklengths. These can
be generalized to β-numbers.

8

5

4

2

1

· · · -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 · · ·
· · · ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • • ◦ • • • · · ·
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Beta numbers and Abaci

..

. ..
...

.

-3 -2 -1

0 1 2

3 4 5

6 7 8

9 10 11

Runner Runner Runner

0 1 2

Level 0 →
Level -1 →

Level 1 →
Level 2 →
Level 3 →

lll
ll

lll

...
...

...

8

5

4

2

1

3-core

· · · -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 · · ·
· · · ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • • ◦ • • • · · ·
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Beta numbers and Abaci

..

. ..
...

.

-3 -2 -1

0 1 2

3 4 5

6 7 8

9 10 11

Runner Runner Runner

0 1 2

Level 0 →
Level -1 →

Level 1 →
Level 2 →
Level 3 →

lll
ll

lll

...
...

...

8

5

4

2

1

The abacus for β = (8, 5, 4, 2, 1,−1,−2,−3, . . .) has balance number
2 = (−1) + 1 + 2.
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Beta numbers and Abaci

..

. ..
...

.

-3 -2 -1

0 1 2

3 4 5

6 7 8

9 10 11

Runner Runner Runner

0 1 2

Level 0 →
Level -1 →

Level 1 →
Level 2 →
Level 3 →

llllll

lll

...
...

...

8

5

4

2

1

The abacus for β = (8, 5, 4, 2, 1,−1,−2,−3, . . .) has balance number 2.
The abacus for β = (9, 6, 5, 3, 2, 0,−1,−2, . . .) has balance number
3 = 3 + (−1) + 1.
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Beta numbers and Abaci

Theorem

Theorem 2.7.16, Lemma 2.7.38 in James–Kerber

λ is an n-core if and only if any (equivalently, every) abacus of λ on n
runners is flush.

Moreover, in the balanced flush abacus of an n-core λ, each active
bead on runner i corresponds to a row of λ whose rightmost box has
residue i .
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Beta numbers and Abaci

..

. ..
...

.

-6 -5 -4

-3 -2 -1

0 1 2

3 4 5

6 7 8

Runner Runner Runner

0 1 2

Level -1 →
Level -2 →

Level 0 →
Level 1 →
Level 2 →

l l l
lll

lll

...
...

...

0 1 2 0

2 0

1 2

0

2

3-core
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The bijection Φk
n

..

. ..
. ..

...
.

-8 -7 -6 -5

-4 -3 -2 -1

0 1 2 3

4 5 6 7

8 9 10 11

ll
l l

ll
l

ll
ll

...
...

...
... Φ8

4→

..

. ..
. ..

...
.

-6 -5 × -4

-3 -2 × -1

0 1 × 2

3 4 × 5

6 7 × 8

ll
l llll
ll

ll

...
...

...
...

4-core (8, 5, 22, 13) 3-core (2, 12).
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The bijection Φk
n

0 1 2 3 0 1 2 3

3 0 1 2 3

2 3

1 2

0

3

2

Φ8
4→

4-core (8, 5, 22, 13) 3-core (2, 12).
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The bijection Φk
n

Let a = (a1, . . . , an) ∈ ΛR written in the εi basis, so each ai ∈ Z and∑n
i=1 ai = 0.

We form a balanced flush abacus from a by filling the (i − 1)st runner with
beads from −∞ down to level ai .

This defines a bijection

π : {(a1, . . . , an) : ai ∈ Z,
n∑

i=1

ai = 0} → {balanced flush abaci} → Cn.
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The bijection Φk
n

Example

n = 4, (2, 0, 0,−2) cooresponds to

-8 -7 -6 -5

-4 -3 -2 -1

0 1 2 3

4 5 6 7

8 9 10 11

ll
l l

ll
l

ll
ll
l 0 1 2 3 0

3 0

2

1

0
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The bijection Φk
n

Proposition

Suppose that π(a) = π(a1, . . . , an) = λ. Then we have

λ1 = (ai − 1)n + i

where ai is the rightmost occurrence of the largest coordinate in a.

Corollary

For k ≥ 0, let Hk
n denote the affine hyperplane

Hk
n = {a = (a1, . . . , an) ∈ Rn : (a, ε(k mod n)) = dk

n
e} ∩ V

inside V , where 1 ≤ (k mod n) ≤ n. Then under the correspondence π,
the n-cores λ with λ1 = k all lie inside Hk

n

⋂
ΛR .
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The bijection Φk
n

..

. ..
. ..

...
.

-8 -7 -6 -5

-4 -3 -2 -1

0 1 2 3

4 5 6 7

8 9 10 11

ll
l ll

ll
ll

ll
l

...
...

...
...

..

. ..
. ..

...
.

-8 -7 -6 -5

-4 -3 -2 -1

0 1 2 3

4 5 6 7

8 9 10 11

ll
l l

ll
l

ll
l ll

...
...

...
...

7 = λ1 = (ai − 1)n + i = (2− 1)4 + 3.

H7
4 = {(a1, a2, a3, a4) : a3 = 2} ∩ V
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(2,1,-3)

(2,0,-2)

(2,-1,-1)

(2,-2,0)

(2,-3,1)

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
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The bijection Φk
n

Theorem

Let ψn be the affine map defined by
ψn(a1, . . . , an) = (an + 1, a1, a2, . . . , an−1). Then,

π−1 ◦ Φk
n ◦ π(a1, . . . , an) = ψai

n−1(a1, . . . , âi , . . . , an)

where ai is the rightmost occurrence of the largest entry among
{a1, . . . , an} and the circumflex indicates omission.
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Φ4
3−→

b
b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
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The bijection Φk
n

We can factor this map into translation composed with root system
embedding.

Example

Let n = 3. The affine hyperplane H7
3 contains the partition

π(3, 1,−4) = (7, 5, 42, 32, 22, 12). Translation by t = (−3, 1, 2) sends H7
3

to
{(a1, a2, a3) ∈ V : a1 = 0}

and in particular sends (3, 1,−4) to (0, 2,−2).

We view this as a subspace of R2 with orthonormal basis {e ′1, e ′2} and
An−2 root system. The embedding identifies e ′1 with e3 and e ′2 with e2 and
we have ψ3(1,−4) = (−2, 2) corresponding to
Φ7

3(7, 5, 42, 32, 22, 12) = (4, 3, 2, 1).
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Open questions:

How do these combinatorics generalize to other reflection groups?

What does the projection Φk
n imply about cells in the affine

Grassmannian, k-Schur functions, or blocks in Sn-modules?
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