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The tropical semiring (R U {c}, ¢, ®) has:

e“addition” & usual minimum.
o“multiplication” @ usual addition

Examples:
3¢64=3, 5R7=12.

Tropical arithmetic is associative and distributative:

Ba7)®5=3®5)d(T®5)=2_

“Freshman’s dream”™: (a ®b)’ = a’ @ b".
The additive identity is co, and the multiplicative identity is O.

Warning: No additive inverses!



Tropical polynomials are piecewise linear functions:
Example: F=2307Q0z20 x4
F(x) =min(3x,2x + 7,x,4)

y =3z

y=2x+7




Problem: With no additive inverse, what does 3 ® x & —2 = 0 mean?
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Problem: With no additive inverse, what does 3 ® x & —2 = 0 mean?

Answer: “Solutions” to such equations are points of nondifferentiability of the
graph of F.

Example: F=2307Qz2®x®4 = 0forz =0, 4.

y=2xr+7




Tropical quadratic formula: F = a®22@bQx®c = min(2z+a, 24+ b, ¢).

y=2x+a y=x-+0b

y—=—=c

(1/2(6—6%,6)
/(c— b, c)

/(b—a.Qb—a)

“Solutions”:

) b—a,c—b if2b<a+c
v 1/2(c—a) f2b>a+c



Definition: The tropical hypersurface V (F') defined by the tropical
polynomial F' is the nondifferentiability locus of the graph of F.

Example: F=2®y®O0 F(x) = min(x,y,0).

w € V(F) if and only if the minimum is achieved at least twice in F'(w).



Definition: A (affine complex) variety is the common solutions
of a set of polynomial equations

X =V(f1,....fs) ={z €C": f1(z) = --- = fs(z) = O}.

Example

X=V((x+y+1,2+ 2y + 3z2)
={(z,y,2) €eC3:x+y=—-1,2+2y+ 32 =0}
={(3t—2,1—3t,t):tcC}



Definition: A (very affine complex) variety is the common nonzero solutions
of a set of (Laurent ) polynomial equations.

X=V(f1,..., fs) ={z € (C)": fi(x) = --- = fs(xz) = O}.

Example

X=V(@x+y+1,2+ 2y + 32)
={(z,y,2) € (C*)3 2 +y=—1,2+ 2y + 3z = 0}
—{(3t—2,1—3t,t):teC\{0,1/3,2/3}}

C*=C\ {0}.



Note: X only depends on the variety defined by the ideal generated by the
Laurent polynomials fq, ..., fs:

I=(f1,....fs) ={Zngz gi € Clat? ...,azﬁfll}.

=1



Note: X only depends on the variety defined by the ideal generated by the
Laurent polynomials fq, ..., fs:

I=(f1,....fs) —{Zngz gi € Clat? ...,azﬁfll}.

=1

1t (fryees fs) = (fhs e SO theN V(1o f) = V(e £,

Write X =V (I) forI = (f1,..., fs),and [ = I(X).



Note: X only depends on the variety defined by the ideal generated by the
Laurent polynomials f1, ..., fs:

I'=(f1,---, fs) —{Zngz g; € Clay™ ...,:z;ffl]}.

1=1
It (f1,..., fs) = (f1,- -, frythen V(f1,..., fs) =V (f,..., fr)
Write X =V (1) forl = {f1,...,fs),and [ = I(X).
Example: X =V(z4+y+ 1,2+ 2y + 3=2).

=(z+y+1l,z+2y+32)=(y+3z2—1,z — 32+ 2)



Notation: For u € Z", 2% = z{1z52... zln.

Definition: If f = 3,czn cux® € ClzT!, ... z:F1] is a Laurent polynomial,
then

F = trop(f) := =" :CT;L%w-u

The tropical hypersurface trop(V (f)) of f is the tropical hypersurface of F.
(Warning: Coefficients have disappeared!)

Example: Let f =2+ y+ 1. Thentrop(f) =z ®y D 0 = min(x,y,0).



Definition: Let X = V(1) C (C*)™. The tropical variety of X is

trop(X)= () trop(V(f))

fel(X)

Theorem [Kapranov, Speyer, Sturmfels, Bieri/Groves ... | The tropical variety
of X is the support of a balanced polyhedral fan of the same dimension as X
that is connected in codimension-one.




Why?
Tropical varieties are combinatorial shadows of classical varieties

Many invariants of the variety can be determined from
the combinatorics of the tropical variety.

Algebraic Geometry (hard) ~~ Polyhedral Geometry/Combinatorics

(somewhat easier)



Example: Let X =V(z+y+ 1,2+ 2y + 3z2).

Thentrop(V(z+y+ 1)) = {(w1,wr,w3) : w1y = wp < 0o0r
’wlzongOrwzzOSwl}

trop(V(x + 2y + 32)) = {(w1, wp,w3) : w1 = wy < w3 Of
w1 = w3z < wp Or wp = w3z < wy}

So(—-1,-1,1) etrop(V(z+y+ 1)) ntrop(V(x + 2y + 3z)). However
y+3z—1€cl,and(—1,-1,1) €trop(V(y+ 3z —1)).



Example continued: X =V (z+y+ 1,2 + 2y + 32).
trop(X) C trop(V(z+y+ 1)) ntrop(V(x 4+ 2y + 32))

In fact tI’OD(X) = {(wl,wg,wg) Fwyp = wo = w3z < 0or
w1:w2=O§w3,w1=w3=O§w20rw2=w3=O§w1}.

This is a fan with rays spanned by {(-1,—-1,—-1),(0,0,1),(0,1,0),(1,0,0)}.



Example continued: X =V (z+y+ 1,2 + 2y + 32).
trop(X) C trop(V(z+y+ 1)) ntrop(V(x 4+ 2y + 32))

In fact tI’OD(X) = {(wl,wg,wg) Fwyp = wo = w3z < 0or
w1:w2=O§w3,w1=w3=O§w20rw2=w3=O§w1}.

This is a fan with rays spanned by {(-1,—-1,—-1),(0,0,1),(0,1,0),(1,0,0)}.

Question: Can we write trop(X) as a finite intersection of trop(V (f)) for
fel(X)?



Linear varieties

It X = V(fl, ceey fr,n) C (C*)n where fi = ?:1 ;i + b;, then
X ={xz € (C)": Az = —b}, where Ais the r x n matrix A = (a;;), and
b= (b;) € C™.

x € X ifand only if (z,1) € (C*)"T1 N ker(A|b).



Linear varieties
It X = V(fl, ceey fr,n) C (C*)n where fi = ?:1 ;i + b;, then
X ={z € (C)" . Az = —b}, where A is the » x n matrix A = (a;;), and
b= (b;) € C".
z € X ifand only if (z,1) € (C*)™T1 N ker(A|b).
Example: X =V(z+y+ 1,2+ 2y + 3z2).
{110

A= ( 1 2 3 ) '

b= (1,0)

Generators for 1(X) correspond to bases for the row space of (A|b).



Definition: The supportofv € C*Tlis {i:v; #0,1 <i<n -+ 1}.

A circuit of the matrix (A|b) is a vector v € C**1 in the row space of (A|b)
whose support is minimal with respect to inclusion.

Note: There are finitely many circuits up to scaling.
Example:

am=(133s)

Circuits: {(1,1,0,1),(1,2,3,0),(0,1,3,-1),(1,0,—3,2)}.



Theorem: Let X = {z € (C*)" : Az = —b} where A is an r x n matrix and
be Cr. LetC = {>7"_ 1 cixj+cyy1 - c=(c1,...,cn41) is acircuit of (Ald)}.
Then

trop(X) = [ trop(V(f))
fec



Theorem: Let X = {z € (C*)" : Az = —b} where A is an r x n matrix and
be Cr. LetC = {>7"_ 1 cixj+cyy1 - c=(c1,...,cn41) is acircuit of (Ald)}.
Then

trop(X) = [ trop(V(f))
fec

Example: trop(V(z4+y+ 1,24+ 2y+ 32)) =trop(V(z+y+1)) N
trop(V(z + 2y + 3z)) Nntrop(V(y + 3z — 1)) ntrop(V(z — 3y + 2)).

This can be computed using the program gfan by Anders Jensen.

Open question: Give as nice an answer for general (nonlinear) varieties.



Why linear varieties?
Many interesting varieties in (C*)™ are cut out by linear equations.

Example: X = Mg, the moduli space of n distinct points on P1.

Mo, =(P*\ {0,1,00})" 3\ diagonals
=(C*\ {1}1)" 3\ diagonals

There is an embedding ¢ : Mg ,, — (@*)(Z)—n for which ¢ (Mg ,,) is cut out
by linear equations.



A = trop(Mp ) is the well-studied space of phylogenetic trees.

GENN
'_‘ j<
N e
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The fan A determines a toric variety X A, which is a (partial) compactification
of (@*)(Z)—n_ The closure of My, inside X A is equal to Mg ,, the moduli
space of stable genus zero curves with n marked points (the Deligne-Mumford
compactification of Mg ;)

Open question: How much of the geometry of MO,n can be determined from
the combinatorics of A? (on going joint work with Angela Gibney).



Other applications:

e Enumerative geometry (Mikhalkin, Gathmann-Markwig, ...)

e Arithmetic geometry (Gubler, Baker, .. .)

e Real algebraic geometry (ltenberg, Shustin, ...)

e Compactifications of moduli spaces (Tevelev, Keel, Hacking, ...,)

e Combinatorics (Develin, Ardila, ...)

Many basics foundational issues remain (Sturmfels, Speyer, Payne, ...)
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Come to MSRI in Fall 2009!!

Connections for Women workshop: August 21-22, 2009.

Introductory workshop: August 24-28, 2009.



