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The tropical semiring (R ∪ {∞},⊕,⊗) has:

•“addition” ⊕ usual minimum.
•“multiplication” ⊗ usual addition

Examples:

3⊕ 4 = 3, 5⊗ 7 = 12.

Tropical arithmetic is associative and distributative:

(3⊕ 7)⊗ 5 = (3⊗ 5)⊕ (7⊗ 5) = 8

“Freshman’s dream”: (a⊕ b)7 = a7 ⊕ b7.

The additive identity is ∞, and the multiplicative identity is 0.

Warning: No additive inverses!



Tropical polynomials are piecewise linear functions:

Example: F = x3 ⊕ 7⊗ x2 ⊕ x⊕ 4

F (x) = min(3x,2x + 7, x,4)

y = 2x + 7

y = 4

y = x

y = 3x



Problem: With no additive inverse, what does 3⊗ x⊕−2 = 0 mean?



Problem: With no additive inverse, what does 3⊗ x⊕−2 = 0 mean?

Answer: “Solutions” to such equations are points of nondifferentiability of the
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Problem: With no additive inverse, what does 3⊗ x⊕−2 = 0 mean?

Answer: “Solutions” to such equations are points of nondifferentiability of the
graph of F .

Example: F = x3 ⊕ 7⊗ x2 ⊕ x⊕ 4 = 0 for x = 0,4.

y = 2x + 7

y = 4

y = x

y = 3x



Tropical quadratic formula: F = a⊗x2⊕b⊗x⊕c = min(2x+a, x+b, c).

(1/2(c− a), c)
y = c

y = x + b

(c− b, c)

(b− a,2b− a)

y = 2x + a

“Solutions”:

x =

{
b− a, c− b if 2b ≤ a + c
1/2(c− a) if 2b > a + c



Definition: The tropical hypersurface V (F ) defined by the tropical
polynomial F is the nondifferentiability locus of the graph of F .

Example: F = x⊕ y ⊕ 0 F (x) = min(x, y,0).

y = 0 ≤ x

0

y

x

x = 0 ≤ y

x = y ≤ 0

w ∈ V (F ) if and only if the minimum is achieved at least twice in F (w).



Definition: A (affine complex) variety is the common solutions
of a set of polynomial equations

X = V (f1, . . . , fs) = {x ∈ Cn : f1(x) = · · · = fs(x) = 0}.

Example

X =V (x + y + 1, x + 2y + 3z)

={(x, y, z) ∈ C3 : x + y = −1, x + 2y + 3z = 0}
={(3t− 2,1− 3t, t) : t ∈ C}



Definition: A (very affine complex) variety is the common nonzero solutions
of a set of (Laurent ) polynomial equations.

X = V (f1, . . . , fs) = {x ∈ (C∗)n : f1(x) = · · · = fs(x) = 0}.

Example

X =V (x + y + 1, x + 2y + 3z)

={(x, y, z) ∈ (C∗)3 : x + y = −1, x + 2y + 3z = 0}
={(3t− 2,1− 3t, t) : t ∈ C \ {0,1/3,2/3}}

C∗ = C \ {0}.



Note: X only depends on the variety defined by the ideal generated by the
Laurent polynomials f1, . . . , fs:

I = 〈f1, . . . , fs〉 =


s∑

i=1

gifi : gi ∈ C[x±1
1 , . . . , x±1

n ]

 .
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If 〈f1, . . . , fs〉 = 〈f ′1, . . . , f ′r〉 then V (f1, . . . , fs) = V (f ′1, . . . , f ′r).

Write X = V (I) for I = 〈f1, . . . , fs〉, and I = I(X).

Example: X = V (x + y + 1, x + 2y + 3z).

I = 〈x + y + 1, x + 2y + 3z〉 = 〈y + 3z − 1, x− 3z + 2〉



Notation: For u ∈ Zn, xu = x
u1
1 x

u2
2 . . . xun

n .

Definition: If f =
∑

u∈Zn cuxu ∈ C[x±1
1 , . . . , x±1

n ] is a Laurent polynomial,
then

F = trop(f) :=
⊕

xu = min
cu 6=0

w · u

The tropical hypersurface trop(V (f)) of f is the tropical hypersurface of F .

(Warning: Coefficients have disappeared!)

Example: Let f = x + y + 1. Then trop(f) = x⊕ y ⊕ 0 = min(x, y,0).



Definition: Let X = V (I) ⊂ (C∗)n. The tropical variety of X is

trop(X) =
⋂

f∈I(X)

trop(V (f))

Theorem [Kapranov, Speyer, Sturmfels, Bieri/Groves ... ] The tropical variety
of X is the support of a balanced polyhedral fan of the same dimension as X

that is connected in codimension-one.



Why?

Tropical varieties are combinatorial shadows of classical varieties

Many invariants of the variety can be determined from
the combinatorics of the tropical variety.

Algebraic Geometry (hard) Polyhedral Geometry/Combinatorics

(somewhat easier)



Example: Let X = V (x + y + 1, x + 2y + 3z).

Then trop(V (x + y + 1)) = {(w1, w2, w3) : w1 = w2 ≤ 0 or
w1 = 0 ≤ w2 or w2 = 0 ≤ w1}

trop(V (x + 2y + 3z)) = {(w1, w2, w3) : w1 = w2 ≤ w3 or
w1 = w3 ≤ w2 or w2 = w3 ≤ w1}

So (−1,−1,1) ∈ trop(V (x + y + 1)) ∩ trop(V (x + 2y + 3z)). However
y + 3z − 1 ∈ I, and (−1,−1,1) 6∈ trop(V (y + 3z − 1)).



Example continued: X = V (x + y + 1, x + 2y + 3z).

trop(X) ( trop(V (x + y + 1)) ∩ trop(V (x + 2y + 3z))

In fact trop(X) = {(w1, w2, w3) : w1 = w2 = w3 ≤ 0 or
w1 = w2 = 0 ≤ w3, w1 = w3 = 0 ≤ w2 or w2 = w3 = 0 ≤ w1}.

This is a fan with rays spanned by {(−1,−1,−1), (0,0,1), (0,1,0), (1,0,0)}.



Example continued: X = V (x + y + 1, x + 2y + 3z).

trop(X) ( trop(V (x + y + 1)) ∩ trop(V (x + 2y + 3z))

In fact trop(X) = {(w1, w2, w3) : w1 = w2 = w3 ≤ 0 or
w1 = w2 = 0 ≤ w3, w1 = w3 = 0 ≤ w2 or w2 = w3 = 0 ≤ w1}.

This is a fan with rays spanned by {(−1,−1,−1), (0,0,1), (0,1,0), (1,0,0)}.

Question: Can we write trop(X) as a finite intersection of trop(V (f)) for
f ∈ I(X)?



Linear varieties

If X = V (f1, . . . , fr) ⊂ (C∗)n where fi =
∑n

j=1 aijxj + bi, then
X = {x ∈ (C∗)n : Ax = −b}, where A is the r × n matrix A = (aij), and
b = (bi) ∈ Cn.

x ∈ X if and only if (x,1) ∈ (C∗)n+1 ∩ ker(A|b).



Linear varieties

If X = V (f1, . . . , fr) ⊂ (C∗)n where fi =
∑n

j=1 aijxj + bi, then
X = {x ∈ (C∗)n : Ax = −b}, where A is the r × n matrix A = (aij), and
b = (bi) ∈ Cn.

x ∈ X if and only if (x,1) ∈ (C∗)n+1 ∩ ker(A|b).

Example: X = V (x + y + 1, x + 2y + 3z).

A =

(
1 1 0
1 2 3

)
.

b = (1,0)

Generators for I(X) correspond to bases for the row space of (A|b).



Definition: The support of v ∈ Cn+1 is {i : vi 6= 0,1 ≤ i ≤ n + 1}.

A circuit of the matrix (A|b) is a vector v ∈ Cn+1 in the row space of (A|b)
whose support is minimal with respect to inclusion.

Note: There are finitely many circuits up to scaling.

Example:

(A|b) =

(
1 1 0 1
1 2 3 0

)
.

Circuits: {(1,1,0,1), (1,2,3,0), (0,1,3,−1), (1,0,−3,2)}.



Theorem: Let X = {x ∈ (C∗)n : Ax = −b} where A is an r × n matrix and
b ∈ Cr. Let C = {

∑n
i=1 cixi+cn+1 : c = (c1, . . . , cn+1) is a circuit of (A|b)}.

Then

trop(X) =
⋂

f∈C
trop(V (f))



Theorem: Let X = {x ∈ (C∗)n : Ax = −b} where A is an r × n matrix and
b ∈ Cr. Let C = {

∑n
i=1 cixi+cn+1 : c = (c1, . . . , cn+1) is a circuit of (A|b)}.

Then

trop(X) =
⋂

f∈C
trop(V (f))

Example: trop(V (x + y + 1, x + 2y + 3z)) = trop(V (x + y + 1)) ∩
trop(V (x + 2y + 3z)) ∩ trop(V (y + 3z − 1)) ∩ trop(V (x− 3y + 2)).

This can be computed using the program gfan by Anders Jensen.

Open question: Give as nice an answer for general (nonlinear) varieties.



Why linear varieties?

Many interesting varieties in (C∗)n are cut out by linear equations.

Example: X = M0,n, the moduli space of n distinct points on P1.

M0,n =(P1 \ {0,1,∞})n−3 \ diagonals

=(C∗ \ {1})n−3 \ diagonals

There is an embedding φ : M0,n → (C∗)(
n
2)−n for which φ(M0,n) is cut out

by linear equations.



∆ = trop(M0,n) is the well-studied space of phylogenetic trees.
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The fan ∆ determines a toric variety X∆, which is a (partial) compactification
of (C∗)(

n
2)−n. The closure of M0,n inside X∆ is equal to M0,n, the moduli

space of stable genus zero curves with n marked points (the Deligne-Mumford
compactification of M0,n)

Open question: How much of the geometry of M0,n can be determined from
the combinatorics of ∆? (on going joint work with Angela Gibney).



Other applications:

• Enumerative geometry (Mikhalkin, Gathmann-Markwig, . . . )

• Arithmetic geometry (Gubler, Baker, . . . )

• Real algebraic geometry (Itenberg, Shustin, . . . )

• Compactifications of moduli spaces (Tevelev, Keel, Hacking, . . . ,)

• Combinatorics (Develin, Ardila, . . . )

Many basics foundational issues remain (Sturmfels, Speyer, Payne, . . . )



Come to MSRI in Fall 2009!!

Connections for Women workshop: August 21-22, 2009.

Introductory workshop: August 24-28, 2009.


