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Chapter 1: Motivation



...from the world of manufacturing

Suppose you need to coordinate robotic agents moving on your factory 
floor. 

•Can I get from configuration A to configuration B without collisions? 

•If so, how can I get from A to B optimally? 

A B 
? 

The Big Idea: We’ll build a space that records the allowable positions 
of our system and then study that space.



Re:configuration

Often, constraints on our robots imply that the movements we wish to 
consider are discrete. 

• tracks in the floor

• electrified guidewires

• optical paths

This discrete movement is what we refer to when using the term 
reconfiguration. 

The space we build to capture these movements will also be 
appropriately discretized. 



...from the world of robotics
D. Rus, Distr. Rob. Lab, MIT
G. Chirikjian, JHU
S. Homans, M. Yim, PARC



Chapter 2: 
Definitions & Constructions



Two robots moving on a track

•A closed collection of states and generators 
is called a reconfigurable system.

‣Agents can slide along an edge to an 
empty vertex.

‣No stopping, backing up, or 
communicating.

•A configuration of the robots on the 
vertices of the track is called a state.

•A move between states is called a 
generator.

Definitions:

We want to build a space, X, that captures the states of our system and 
the moves (generators) between states.

K5



The State Complex

vertex in X             state         
edge in X            generator     

We say these independent moves 
commute, and we capture this by 
adding information to X in the form of 
cubes:

pair of commuting 
generators         

square in X

collection of k 
pairwise commuting 
generators         

k-cube in X

X is called the state complex for the 
reconfigurable system of two robots 
moving on K5.

X

How do we build X?

transition 
graph {=



The State Complex

Let’s finish our example: 

•Due to symmetry in K5 this local picture is 
repeated everywhere (i.e., every vertex in 
the state complex looks the same).

•Since squares patch cyclically around each vertex, gluing these local 
pictures together yields a closed (orientable) surface.

•Count: 20 vertices, 60 edges, and 30 faces in X.

  ⇒ Euler characteristic  χ(X) = 20 - 60 + 30 = -10

•Since X is orientable, χ(X) = 2 - 2g  (where g = genus, or # of handles).

 ⇒  -10 = 2 - 2g  

⇒   g = 6  ⇒      X =



Cube Complexes

State complexes are examples of cube complexes. 

•A cube complex is a collection of cubes of the form [-1, 1]k glued 
together “nicely” along their boundaries (faces).

Examples: 

Non-examples: 

•Tools from smooth topology and geometry can be adapted so they 
apply to cube complexes.



Chapter 3: Geometry, 
Topology, and Group 
Theory



Curvature 101

Geometers use the notion of curvature to measure how much a space 
deviates from being flat (or Euclidean).

✦  Curvature in the model spaces

 κ > 0  κ = 0  κ < 0



Curvature 101

 Curvature in general metric spaces

• Rather than measure curvature directly, we often want to find an 
upper (or lower) bound on the curvature of a space.  

• We can do so in any geodesic metric space, X, by comparing chords 
in geodesic triangles to chords in some comparison space.

If d’ ≤ d for all chords in all triangles, we say X is CAT(0).

If d’ ≤ d only in sufficiently small triangles, we say X is locally CAT(0), 
or non-positively curved (NPC).
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Curvature 101

✦  Geodesic triangles in the model spaces

thin triangles 
⇒ CAT(0)



Curvature?  What curvature?!

I thought we were talking about cube complexes.  Aren’t cubes FLAT?

✦  Curvature in the (cubulated) model spaces

They are... in the interiors.  Curvature can be concentrated where 
several cubes come together.  Here’s how:

 κ > 0

≤ 3 squares

 κ < 0

≥ 5 squares

 κ = 0

4 squares

To find curvature bounds, all we have to do is check all chords in all 
geodesic triangles in our space and compare them to similar chords in 
a model space...



Curvature for cube complexes

A theorem of Gromov provides a combinatorial way to detect the 
presence of non-positive curvature in cube complexes.

Gromov’s Link Condition:  A cube complex is NPC  ⇔  
the link of each vertex is a flag complex.

the link of v, 
lk(v):

 Theorem [Ghrist, P]:  State complexes are NPC.

A simplicial complex is flag if whenever edges bound a k-simplex, that 
k-simplex itself belongs to the complex (i.e., all triangles are filled in)



Implications of NPC

• Spaces that are NPC have universal covers that are CAT(0) and 
therefore contractible.  (In a CAT(0) space, geodesics are unique.)

• The higher homotopy groups of X vanish, so X is an Eilenberg-
MacLane space, or a K(π, 1) space.

• The fundamental group, π1(X), is torsion-free.

Moral:  Geodesics exist in state complexes, and there’s only one 
geodesic in each homotopy class.  

Thus, finding optimal paths between configurations of our robots is 
not only possible, it’s not too hard.



Group Theory & Topology (via more geometry)

✦ Hyperplanes

✦ Badly behaved hyperplanes

We can obtain information about our cube complex by looking at its 
hyperplanes: “slices” obtained by setting one coordinate xi = 0.

self-intersecting 
hyperplane

one-sided 
hyperplane

self-osculating 
hyperplane

inter-osculating 
hyperplanes



Group Theory (via more geometry)

Definition: A cube complex that avoids these hyperplane pathologies is 
called A-special.

Theorem [Ghrist, P]:  State complexes are A-special.

Theorem [Ghrist, P]:  Fundamental groups of state complexes are
    subgroups of right-angled Artin groups.

Examples: 



Implications of “special”

• Right-angled Artin groups are groups with the following presentation:

• Right-angled Artin groups are subgroups of linear groups, so 
fundamental groups of state complexes are in fact linear.

A  = 〈 a1 , a2 , ... , an ｜ ai aj = aj ai  for some set of  i ≠ j 〉

• Since these groups are finitely generated, they are residually finite.
(Residually finite groups have lots of finite quotients, and so the  
 spaces associated to them have lots of finite covers.)

Moral: It is useful in geometric group theory to have examples of 
spaces that generate groups with these types of “finiteness properties.”

From a topological standpoint, it can be useful to have many covering 
spaces that allow room to embed other spaces.



Chapter 4: Conclusions



Back to the beginning

Recall: We started our investigation in a 
factory.

While exploring the spaces that arise naturally 
in this context, we encountered rich and 
abstract mathematics from a variety of areas 
that were relevant to our investigation.

• There is a need for mathematical rigor in applications.

• There is a lot left to be explored.

• There are a bevy of mathematical topics waiting to be applied.

→ Get to work!


